EEAIFE 400

PROFESGIONAL AUDIO RECORDER

INSTRUCTION MANUAL

3M Brand

Professional Audio Recorder Series 400

INSTRUCTION MANUAL

This 3M M23 manual
 was
 "scanned by the klettster"
 as a GIFT*

to those who have these machines and want to keep them operational

The 3M M23 was the first 3M iso-loop tape recorder for professional use

3M M23 machines were around 45 years old at the time this scan was made

enjoy this... keep the reels turning

$*_{\text {if some opportunist charges you money for this pdf he's making money from no }}$ investment other than his time, trolling around on the interweb finding this and other docs, downloading and flipping multiple copies for cash - like a money machine... whereas the klettster has several hours and $\$ 36$ in costs (for scanning the larger pages) invested in to this... and is asking nothing... other than that you use and enjoy... maybe I am the idiot and the trolling pdf reseller is the genius...

I'll leave that for others to debate.

FOR SALES INFORMATION

Minnesota Mining and Manufacturing Company 3M Center
St. Paul, Minnesota 55101
(612) 733-1625

FOR PARTS AND SERVICE

Western U.S. 3 M Company Miricom Division 300 South Lewis Road Camarillo, California 93010 (805) 482-1911
Eastern U.S. 3 M Company Mincom Division 1750 Pennsylvania Avenue Suite 1100
Washington D. C. 20006
(202) 298-9200

INTRODUCTION

This Instruction Manual has been prepared for the convenience and use of owners of the 3 M Brand Professional Audio Recorder. The manual is supplied with each recorder shipped from the factory, and should be consulted before installation and operation of the recorder is attempted.

This manual is a revised edition of the original Series 400 Professional Audio Recorder Instruction Manual. It contains information reflecting changes made in the recorders with serial number above 250. Much of the original information contained in the earlier manual has been retained or expanded in this manual and is applicable for all Series 400 Recorders. However, care should be taken in the event this manual is referenced when used with machines having serial numbers 250 or lower. Differences, although minor in most cases, could cause difficulty in troubleshooting and ordering replacement parts or assemblies.

LIST OF EFFECTIVE PAGES

Dates of issue for original and changed pages are:

Original. . O. . Dec. 67

Change . . 1 . . Feb. 69

TOTAL NUMBER OF PAGES IN THIS PUBLICATION IS 294 CONSISTING OF THE FOLLOWING.

Page No.	Change No.	Page No.	Change No.
Title	1	39/40, 41	0
List of Sales Offices	1	42 through 49/50	1
Introduction	1	51 through 55	1
A	1	56	0
i through vi	1	57 through 89/90	1
0	0	91 through 100	1
1 through 6	1	101	0
7	0	102 through 129/130	1
8	1	131/132 through 161/162	- 1
9, 10	0	163 through 185/186.	
11 through 22	1	187/188.	1
23/24	0	189 through 253/254	1
25 through 27	1	255 through $257 / 258$	1
28, 29	O	259 through 275/276.	1
30	. 1	277/278..	1
31	0	279 through 287/288	1
32 through 34	1	289 through 303/304.	1
35	. 0	305 through 312......	. 1
36 through 38 . .	. 1		

TABLE OF CONTENTS

Page
GENERAL DESCRIPTION
Functional Description 1
Dynatrack Electronic System 1
Isoloop Tape Transport 4
Physical Description 6
Equipment Description 6
Specifications 18
INSTA LLA TION
Receipt Inspection 25
General 25
Location Considerations 25
Console Model Installation 25
Rack (or Custom) Mounting 26
Portable Model Installation 30
Electrical Connections 30
Power and Control Cable 30
Head Cables 32
Signal Connectors 32
Remote Meters 32
Pilot Tone 32
Remote Control 32
Edit Foot Control 32
Power Cord 34
Capstan Assist Spring 34
Reproduce Only Electronics Assembly Connections 34
Interface Information 36
Signal Input 36
Signal Output 36
Remote Meter 37
Pilot and Loudspeaker 38
Phones 38
Auxiliary Ground 39/40
OPERATING CONTROLS AND DETAILS
Tape Transport Controls 41
PLAY Button 41
FORWARD Button 41
STOP Button 42
REWIND Button 42

TABLE OF CONTENTS (Continued)

Page
OPERATING CONTROLS AND DETAILS (Cont'd)
RECORD Button 42
POWER Switch 42
A-B OUTPUT Transfer Switch 43
RUNOUT Switch 43
SPEED Switch 43
BALANCE Switch 43
Tape Transport, Tape Handling Components 44
Reversing Idler 44
Editing Index 44
Head Assembly 44
Tape Lifters 44
Head Shield Door 44
Capstan 44
Capstan Idler (Incoming) 46
Capstan Idler (Outgoing) 46
Tape-Threaded Sensor 46
Edit Post 46
Reel Holders 46
Electronics Assemblies 46
RECORD LEVEL Control 47
REPRO. LEVEL Control 47
REC. SELECT Switch 48
METER Switch 48
OUTPUT SELECT Switches 49/50
REC. Indicator 49/50
PHONES Jack 49/50
GENERAL OPERATING PROCEDURES
Preliminary 51
Threading 51
Monitoring 51
Recording 53
Playback 54
Overdubbing 54
Erasure 54
Editing 55

TABLE OF CONTENTS (Continued)

Tape Transport 57
Flutter 67
NAB Signal Electronics Alignment 70
NAB Playback Alignment 70
NAB Record Alignment 74
15 IPS Tape Speed Alignment 74
7-1/2 IPS Tape Speed Alignment 75
Dynamic Range Adjustment (NAB) 76
Miscellaneous Adjustments and Circuit Arrangements 77
Dynatrack Electronic Alignment 80
Dynatrack Record Alignment 81
H Track NAB Alignment 82
L Track Alignment 83
Combined H-L Dynatrack Performance 83
Dynamic Range Measurement, Dynatrack 84
Heads 87
Tape Guides 87
Reel Hubs 88
MAINTENANCE
General Precautions 91
Troubleshooting 92
Field Service 100
Factory Repair Service 100
PRINCIPLES OF OPERATION
Introduction 101
Tape Drive Components (See Figure 30) 101
Tape Transport Circuit Descriptions 103
Power Circuits 103
Threaded Tape Condition 105
From Standstill to Play 105
From Play to Stop 106
From Stop to Rewind 107
From Rewind to Stop (Tape Moving in the Rewind Direction) 107
From Rewind to Stop (Tape Moving in Forward Direction) 108
From Stop to Forward 108
From Forward to Stop (Tape Moving in Forward Direction) 108
From Forward to Stop (Tape Moving in Rewind Direction) 109
From Forward to Rewind 109

TABLE OF CONTENTS (Continued)

Page
PRINCIPLES OF OPERATION (Cont'd)
From Rewind to Forward 109
From Rewind to Play 109
From Forward to Play 110
Tape Runout 110
Record Mode Operation 111
Speed Change Switch 111
Reel Size Switch 111
Torque Control Relay 112
Monitor Switching 112
Runout Switch 113
Fail-Safe Brakes 113
Signal Electronics Functions 113
NAB Electronics 114
NAB Recording 114
NAB Reproduction 116
Dynatrack Electronics 118
Detailed Circuit Descriptions 119
H and NAB Record Amplifier (4) 119
L Record and Bias (3D) 121
Bias and Erase Amplifier (1) 122
H and NAB Preamplifier (7) 123
H and NAB Preamplifier with Overdub (7/9) 125
Line Amplifier (6) 125
L Preamplifier and Switch (8D) 126
Meter and Power Supply Assembly (5) 129/130
NAB Erase Coupler (3N) 129/130
SCHEMATICS
PARTS LISTS
Introduction 163
Ordering Replacement Parts 163

LIST OF ILLUSTRATIONS

Figure No. Page
1 3M Brand Professional Audio Recorder 023
Dynatrack Characteristics 2
Dynatrack H and L Channels 3
H and L Track Transfer 4
Isoloop Tape Drive 5
3M Brand Professional Audio Tape Recorder Systems 7
Tape Transport 8
Electronics Assembly (One Channel) 9
Reproduce Only Electronics Assembly 10
Outline Dimensions, Console Models 27
Outline Dimensions for Rack Mounting and Custom Installations 28
Typical Rack Mounting Layout 29
Transporter Case Outline Dimensions 31
Cable Connections 33
Signal Input Connector Wiring 36
Signal Output Connector Wiring 37
Remote Meter Connector Wiring 38
Pilot Connector Wiring 39/40
Tape Drive Components 45
Electronic Controls 47
Tape Threading 52
Tape Editing 56
Tape Transport Adjustments, Top View 58
Tape Transport Adjustments, Bottom View 59
Example of Simple Stroboscope Lamp 60
Electronics Assembly Adjustment Locations 71
Record and Playback Head Azimuth Adjustments 73
ASA Weighting Network and Response Curve 85
Reel Hub Adjustment 89/90
Tape Recorder, Block Diagram 102
Tape Transport Schematic 133/134
Tape Transport Circuit Board Layout 135/136
Tape Transport Wiring Diagram 137/138
Electronics Block Diagram 139/140
Remote Control Assembly Schematic 141/142
Bias and Erase Amplifier Schematic 143/144
NAB Erase Coupler Schematic 145/146
Dynatrack L Record Amplifier Schematic 147/148
H and NAB Record Amplifier Schematic 149/150
Electronics Assembly (Meter and) Power Supply Schematic 151/152
Line Driver Amplifier Schematic 153/154

LIST OF ILLUSTRATIONS (Continued)

Figure No. Page
42 H and NAB Reproduce Preamplifier Schematic 155/156Dynatrack L Preamplifier and Switch Schematic157/158
H and NAB Preamplifier with Overdub Schematic 159/160
Dynatrack Power Supply Schematic 161/162
Tape Editing Switch Assembly 187/188
Tape Deck Assembly 253/254
Remote Control Assembly 257/258
Audio Signal Electronics Housing Assembly 277/278
Signal Electronics Power Supply Assembly with Meter 287/288
Reproduce Signal Electronics Housing 303/304
LIST OF TABLES
Table Page
1
3M Brand Professional Audio Recorder Components 11
Specifications 19
Standard Dynatrack and NAB Head and Signal Cable Connections 35
Capstan Speed Error (for 48 element strobe wheel) 61
Spring Scale Reading to Motor Torque Conversion Table 63
Takeup Motor Torques 64
Supply Motor Torques 64
Components Contributing to Flutter 68
Troubleshooting 92
Line Operating Level Calibrating Resistors 126
11 Parts List Index 164

Figure 1. 3M Brand Professional Audio Recorder

GENERAL DESCRIPTION

The 3 M Brand Professional Audio Recorder is manufactured by the Mincom Division of the 3 M Company in Camarillo, California. It fulfills a requirement in the professional recording industry for the ultimate quality in tape recording. The continued improvements in records, tapes, and playback equipment revealed deficiencies in original master recordings. The 3M Brand Professional Audio Recorder overcomes these problems and provides improved master music tapes -- improvement readily discernible by ear.

The 3 M Brand Professional Audio Recorder provides significant improvements over present professional audio recorders in three basic areas. Probably the most import of these is the improved dynamic range, as much as 15 db . The second area of improvement is a new tape drive system that reduces flutter to half that present in other tape transports in the audio field. Third, the entire system affords an operating and editing ease unmatched by any other tape recorder. Other improvements, not readily apparent, are an increase in the long-term reliability due to the exclusive use of silicon transistors in the electronics assemblies plus the simplified tape-drive system.

The 3M Brand Professional Audio Recorder achieves its outstanding performance from such patented techniques as the 3 M Dynatrack system of recording and playback, and the Isoloop tape drive system; plus experience gained from over a decade of design and manufacture of Mincom, state-of-the-art, aerospace tape recorder-reproducer systems.

FUNCTIONAL DESCRIPTION

Functionally, the 3 M Brand Professional Audio Recorder operates on the same basic principles as any other tape recorder. These principles are covered in many textbooks and will not be presented in this manual. As stated, the features that give this recorder its outstanding performance are the Dynatrack technique of recording and reproducing, and the Isoloop tape drive.

DYNATRACK ELECTRONIC SYSTEM

The Dynatrack technique improves signal-to-noise ratio and expands the recorded dynamic range of tapes by as much as 15 db over other recorders. These improvements are the result of a revolutionary, yet relatively simple, diversity recording and reproducing system. The diversity system feeds the same signal through two recording heads, mounted parallel in the same head stack, and records two separate, full band information tracks simulatneously. Every channel in the Dynatrack recorder (one channel for mono, two for simple stereo, or three for
multi-channel stereo, or stereo and mono together), records two information tracks.
One track of a channel is recorded at a normal level, following NAB recording standards. The other track, recording the identical information records signals at a higher level (more recording amplifier gain), employs a preemphasis curve rising 15 db from 400 Hz to $15,000 \mathrm{~Hz}$ (figure 2A).

The track recorded at normal level can handle higher signal levels, so it is called the H track. It will reach distortion levels in accordance with standard VU meter practice and with NAB response and distortion specifications. The other track, with its preemphasized, higher-level signal, is better suited for recording signals of a much lower sound level, so it is called the L track. This L track will go into overload distortion at high-frequency signal levels considerably below 0 VU on the meter. But when reproducing very soft sounds, which are usually lost in tape noise when recorded at normal levels, the L track will put out a clean, undistorted signal at a level well above tape noise (figure 3).

Once these two tracks are recorded as described, the only remaining problem is to arrange for playing back the proper track -- that track with minimum noise or minimum distortion -- and at the proper signal level.

Figure 2. Dynatrack Characteristics

Figure 3. Dynatrack H and L Channels
Selection of the proper playback track is dependent upon an electronic circuit which is fully automatic and completely silent in switching from one track to the other. The circuitry is designed and calibrated so that the signals from the L track are reproduced up to the point where the signal approaches 1% total harmonic distortion. At this point the output is taken from the H track, which has a signal recorded as much as 15 db below the 1% distortion point. Now, the level of the output signal can continue rising until it reaches the normal maximum, as indicated on the VU meter. This track transfer from L to H occurs much faster than the ear can detect so that sudden steep transients of high volume are cleanly reproduced without any audible distortion. When the signal on the L track drops below 1% distortion, the electronic circuit automatically transfers the signal from the H track back to the L track in approximately 30 milliseconds.

NOTE

No switching occurs on signals below 400 Hz , as tape noise rarely intrudes on signals below this frequency.

To equalize playback levels of both the L and H tracks, there is a deemphasis network in the play circuit of these preamplifiers, providing the exact opposite of the preemphasis network in the recording circuitry (figure 2B).

A continuous visual check as to which track is being reproduced is provided by the pilot lamp in the L track preamplifier section of the electronic assembly. When the lamp is glowing, the L track is being reproduced; when the lamp is out, the H track is being fed to the output.

This automatic track transfer system is a completely electronic system; no mechanical relays, switches, etc., are used (figure 4). All electronics are solid-state, assuring long term reliability and accuracy of performance. Also, as the Dynatrack recording technique is completely electronic, there is no noise involved at any frequency, and the system is completely undetectable in use -- except for the increased signal-to-noise ratio and the far greater dynamic range of tapes recorded and reproduced on the 3 M Brand Professional Audio Recorder.

ISOLOOP TAPE TRANSPORT

The tape transport mechanism of the 3 M Brand Professional Audio Recorder is derived from designs used in instrumentation recorders, where standards of timing accuracy, and wow and flutter are even more demanding than

Figure 4. H and L Track Transfer
they are in audio recording. The heart of the patented Isoloop tape drive is the differential capstan, which maintains a constant tape tension within the drive and positive contact of the tape against the heads (figure 5). In addition, the unsupported tape path is extremely short in comparison to standard design tape recorders. This short path reduces longitudinal oscillation to a new low and eliminates the need for a series of tape guides to maintain a proper tape path.

The tape tension required to minimize flutter and hold the tape against the heads is generated within the closed loop by the differential drive capstan. The tape drive surface of the capstan is divided into regions of two different diameters. The incoming idler roller is contoured so as to press the tape firmly into the matching "grooves" (of the smaller diameter) of the capstan. The outgoing idler roller is shaped so as to press the tape firmly against the "ridges" (of the larger diameter) of the capstan. This differential of capstan diameters constantly tries to extract more tape than is being fed into the loop and creates the necessary tension by means of the slight elasticity of the tape itself. This tape tension is always kept safely within its elastic limits.

The Isoloop tape drive, short tape path, and flywheel driven capstan all aid in reducing the flutter of the tape transport to approximately half that found in other professional tape drive systems.

Figure 5. Isoloop Tape Drive

PHYSICAL DESCRIPTION

The system equipment can be supplied in almost any configuration required. It is available in several standard console configurations, as a portable system contained in its own portable case, or unmounted for installation in a 19-inch equipment rack (figure 6). Special consoles and cabinets are available on special order. Systems are engineered to fit the user's requirements: the number and type of channels, and the mounting and installation to fit the application. Complete installation instructions for each of the standard models is given under Installation.

Physically, each system consists of a tape transport and electronics as required. This may be 1 to 8 channels of NAB electronics, lo to 4 channels of Dynatrack electronics or a combination of both. Any system can be expanded up to the maximum capacity simply by adding additional channels of electronics and changing the tape width and magnetic heads.

EQUIPMENT DESCRIPTION

Each tape recorder system will have a tape transport (figure 7) and an electronics assembly (figure 8) for each record and play channel. Also, a system may have any of the accessories listed in table 1.

The basic tape transport is the same in all systems; the only difference is in the tape width, magnetic heads, and capstan speed. The tape guides and magnetic heads are installed as kits depending upon the number and type of channels. The transport is available with either of two capstan sizes. One of these kits accommodates $1 / 4$-inch or $1 / 2$-inch tape. It is normally furnished in machines that will never be expected to use tapes wider than $1 / 2$ inch. The other kit is intended for machines using l-inch tape. While $1 / 2$-inch and $1 / 4$-inch tape can be run on the l-inch capstan, the latter is less convenient for threading and editing $1 / 4$-inch or 1/2-inch tape.

The electronics assembly contains the electronics required for a single channel of NAB or Dynatrack record and playback. Each electronics assembly contains a plug-in power supply and meter (the meter may be in a remote location), controls and indicators, and as many as seven plug-in circuit boards. There is an input and an output transformer located behind the control panel. All electrical connections for each channel are made on the rear panel of the electronics assembly.

The electronics assembly plug-in circuit boards are numbered lthrough 9 on the board handle indicating the slot that the board goes in. Slot 2 is always empty and the meter and power supply is slot 5 . To change the electronics assembly between NAB and Dynatrack it is only necessary to change the boards in slot 3 and 8. The NAB boards have an N on their handle and the Dynatrack boards have a D on their handle. It is also necessary, when changing between NAB and

UNMOUNTED

Consists of tape transport and electronics. Transport is complete with required magnetic heads and ready for horizontal or vertical mounting. Electronics are individual modular panels and provide either standardNAB and/or Dynatrack functions.

CONSOLE

Transport and electronics mounted within a console cabinet.

PORTABLE

Components mounted within rugged shock mounted portable cases.

Figure 6. 3M Brand Professional Audio Tape Recorder Systems

Figure 8. Electronics Assembly (One Channel)

1178

Figure 9. Reproduce Only Electronics Assembly

Dynatrack, to change the cabling on the rear panel of the electronics assembly and possibly the magnetic heads and tape width of the transport.

The Professional Audio Recorder is available as an all reproduce (figure 9), or combination of record-reproduce, and reproduce only system. The reproduce only electronics are contained in a special electronics assembly. Two circuit boards per channel are required. There is a head cable input connector, output transformer, and signal output connector for each channel on the rear panel. The front panel contains a meter, selector switch, phone jack, and power on indicator.

The tape transport operates at either of two electrically selectable tape speeds. The most common speeds are 7-1/2 and 15 ips; however, other speeds are available. The electronics equalization is automatically switched to the selected tape speed. The standard transport is equipped to accommodate $10-1 / 2$ inch reels with NAB hub; however, other hubs and reel capacities are available.

The tape transport contains the tape motion controls and tape handing controls; plus, it performs certain functions common to all of the electronic assemblies. It provides tape speed equalization control, the source of bias and erase frequency, the A-B transfer function, and control of the record function. The POWER button on the transport controls the power to the entire system. The electronics assembly contains all of the remaining controls, such as the record and reproduce level controls, and the meter control.

Table 1. 3 M Brand Professional Audio Recorder Components

COMPONENT				DESCRIPTION
TAPE TRANSPORT				
TAPE TRANSPORTS Capstan Guides Speeds (ips) (inches)				Complete tape transport less mounting hardware and head assemblies
23013B000-10	$71 / 2,15$	1/2	1/4	
23013B000-11	$71 / 2,15$	1/2	1/2	
23013B000-12	71/2, 15	1	1/4	
23013B000-13	71/2, 15	1	1/2	
23013B000-14	71/2, 15	1	1	
23013B000-17	15, 30	$1 / 2$	$1 / 4$	
23013B000-18	15, 30	$1 / 2$	1/2	
23013B000-19	15, 30	1	1/4	
23013B000-20	15, 30	1	$1 / 2$	
23013B000-21	15, 30	1	1	

Table 1. 3M Brand Professional Audio Recorder Components (Cont'd)

Table 1. 3 M Brand Professional Audio Recorder Components (Cont'd)

COMPONENT			DESCRIPTION
CAPSTAN AREA PARTS			
23013A900	(1/4-1/2 inch)		Capstan, reversing idler,
23013A905	(1/2-1 inch)		capstan idlers, idler arms, tape lifter, head gate, trim covers and capstan assembly (shaft, housing, and bearings).
HEAD ASSEMBLIES			
	Tape (inches)	Tracks	
23000A020-1	1/4	1	Includes erase, record, and
23000A020-2	1/4	2	playback head stacks mounted on bolt-on precision plate,
23000A020-5	$1 / 2$	2	with single 42-pin connector.
23000A020-3	$1 / 2$	3	
23000A020-4	$1 / 2$	4	
23000A020-6	1	3	
23000A020-7	1	4	
23000A020-8	1	6	
23000A020-9	1	8	
PREPLAY HEADS			
Tape (inches)		Tracks	
23000A900-1	1/4	1	Monitors tape ahead of reproduce heads to drive variable-pitch record cutting lathe.
23000A900-2	1/4	2	
23000A900-4	$1 / 2$	3	
23000A900-5	$1 / 2$	4	
23000A900-6	1	4	
23000A900-7	1	8	
TRANSPORT COVER PLATES			
$23013 \mathrm{~A} 023$	$\begin{array}{r} 19-\text { inch }(-1 \\ -2 \end{array}$	$\begin{gathered} 10 \mathrm{l} / 2-\mathrm{i} \\ 12 \text {-inch } \mathrm{r} \end{gathered}$	
23000 A 005	24-inch (10	-inch reel	

Table 1. 3 M Brand Professional Audio Recorder Components (Cont'd)

COMPONENT	DESCRIPTION
$31 / 2$-INCH BLANK PANEL $83-1360-0166$ 5 1/4-INCH BLANK PANEL $23028 \text { A046 }$ PORTABLE TRANSPORTER CASES $\begin{aligned} & 23028 A 100-1 \\ & 23028 A 100-2 \end{aligned}$	This panel is installed to provide space above rack-mounted transports for reel hangover. Used in place of an electronics assembly. Fits transport with 1 inch capstan. Fits transport with 1/2-inch capstan plus one channel of electronics.
ELECTRONICS ASSEMBLY	
ELECTRONICS ASSEMBLY 23059A010 ELECTRONICS ASSEMBLY BOARDS NAB BOARD SET 23059A900 Bias and Erase Amplifier (1) NAB Erase Coupler (NAB only) (3) H and NAB Record (4) Meter/Power Supply (5) Line Driver Amplifier (6) Overdub Preamplifier (7/9)	Consists of the basic electronics chassis assembly less all of the plug-in units. These boards may be obtained as NAB channel set, Dynatrack channel set, or individually. Six of the boards are common; used for both NAB and Dynatrack.

Table 1. 3 M Brand Professional Audio Recorder Components (Cont'd)

Table 1. 3M Brand Professional Audio Recorder Components (Cont'd)

COMPONENTS	DESCRIPTION
H AND NAB PREAMPLIFIER CIRCUIT BOARD 23059A170	Part of the reproduce circuit -installed in slot 7.
L PREAMPLIFIER AND SWITCH CIRCUIT BOARD $23059 \text { A } 140$	Part of the Dynatrack reproduce circuit-- installed in slot 8 .
H AND NAB PREAMPLIFIER WITH OVERDUB 23059B090	Same as slot 7 board but with overdub feature -- may be used in slot 7 or 9 .
NAB CONVERTER $\text { 23059A } 920$	This board is required only when a Dynatrack Electronics Assembly is converted to NAB operation.
POWER SUPPLY WITHOUT METER 23059A250	Power supply used with remote meters -- installed in slot 5 .
CABLES	
TRANSPORT-TO-ELECTRONICS POWER AND CONTROL CABLES 23028A055 4 channel 23028A065 8 channel HEAD CABLES 23000A010-1 1 track 23000A010-2 2 tracks 23000A010-3 3 tracks 23000A010-4 4 tracks 23000A010-8 8 tracks	5-foot cable, 15-pin connectors. 5-foot, Y-cable, 15-pin connectors. This cable is about 66-inches long, and connects between the head plate on the transport and each channel of electronics. There is a play (P), record (R), and erase (E) head cable for each track.

Table 1. 3 M Brand Professional Audio Recorder Components (Cont'd)

COMPONENT	DESCRIPTION
A CCESSORIES	
REMOTE CONTROL (with 5-foot cable) $23017 \mathrm{~A} 000$	This unit provides remote control of the RECORD, PLAY, STOP, REWIND, FORWARD, and A-B OUTPUT transfer functions.
REMOTE CONTROL EXTENSION CABLE 23017A010	A 25-foot extension cable for the remote controls.
EDIT FOOT SWITCH 23000A950	Permits hand-free spill/standby/ wind for rapid tape editing.
EXTENDER BOARD 23059A110	Extender board for circuit boards in the electronics assembly.
REPRODUCE ONLY ELECTRONICS 23059A960-1 4 channel NAB 23059A960-2 8 channel NAB	Includes a chassis assembly, a preamplifier and line amplifier for each channel.
FILM SYNC ELECTRONICS Chassis Assembly and Circuit Board Set 23059A950 Bias and Erase Amplitier Circuit Board (1) 23059A020 Erase Coupler Board (3N) 23059A030 Film Sync Record Amplifier Board(3S) 23059A330 H and NAB Record Amplifier Board (4) 23059B040	Fits $51 / 4 \times 19$ inch rack space. Slot 1 Board Slot 2 Board Slot 3 Board Slot 4 Board

Table 1. 3M Brand Professional Audio Recorder Components (Concluded)

COMPONENTS	DESCRIPTION
Meter and Power Supply Assembly 23059A050 H and NAB Preamplifier Board (7) 23059A170 Line Driver Amplifier Board (6) 23059A060	Slot 5 Assembly
Film Sync Reproduce Board (9S) 23059A390 Film Sync Head Cable Set 23000A310 Board Film Sync Power Cable 23023A350 Slot 6 Board	

SPECIFICATIONS

Specifications for the 3 M Brand Professional Tape Recorder are presented in table 2. These specifications are based upon operation in accordance with the procedures and conditions presented in this manual. Deviation from these procedures, use of other than recommended magnetic tapes, or modification of the equipment may result in degradation of the equipment performance. These specifications are subject to change without notice.

Table 2. Specifications

Specifications are based on use of Scotch Brand Dynarange recording tapes 201, 202, or 203. Adjustable bias and equalization permits accommodation of a wide range of tape characteristics.

The Dynatrack system matches the NAB curve of frequency versus distortion for 15 ips above a designed reference level. The weighted 3 M equalization curve is followed at low level for extended dynamic range.

Standard machines are normally equalized for NAB 15 and $7 \mathrm{l} / 2 \mathrm{ips}$ speeds. Equalizers are automatically switched when the tape speed is changed. Other forms of equalization may be provided on order.

Table 2. Specifications (Cont'd)

CHARACTERISTICS	SPECIFICATIONS
Frequency Response:	15 ips NAB equalization $\pm 1 \mathrm{db} 40$ to 15,000 cycles $\pm 2 \mathrm{db} 30$ to 15,000 cycles $71 / 2$ ips NAB equalization $\pm 1 \mathrm{db} 50$ to 12,000 cycles $\pm 2 \mathrm{db} 30$ to 15,000 cycles
Phasing:	Signal input to output polarity is maintained on all channels.
Channel Separation:	Channel to channel crosstalk separation is greater than 50 db at 500 cycles (zero VU).
Electronics Input:	20, 000 ohm balanced or unbalanced line. -20 dbm to +8 dbm signal on $600-\mathrm{ohm}$ bus.
Electronics Output:	Feed to 150 or 600 -ohm line, terminated or unterminated at levels of +4 or +8 dbm . Convenient switch transfers output directly to monitor loudspeaker line with peak power capability of 1 watt to an 8 -ohm load. Other operating levels are available on special order.
Bias and Erase Oscillator:	Master oscillator on tape transport supplies 120 kHz , through a low impedance bus to the individual bias and erase power amplifiers for each channel.
Degree of Erasure:	A 1,000 cycle signal at 3% distortion level is reduced 68 db or more by the erase head provided for NAB standard operation.
Power Input:	110 to 135 volts, 60 cycles. Internally regulated power supplies make transformer tap changes unnecessary over this range. Optional 50 cycle power.

Table 2. Specifications (Cont'd)

CHARACTERISTICS	SPECIFICATIONS
Electronic Controls:	Operating controls provided on front panel of each electronics module: RECORD LEVEL and REPRO LEVEL gain controls with positive mechanical shaft locks. REC SELECT switch (RDY., SAFE, O. DUB), METER switch (CAL., SIGNAL, ERASE, BIAS), OUTPUT SELECT pushbutton (A or B), REC. (record) warning pilot lamp, and PHONES jack.
MECHA NICA L	
Speeds:	$71 / 2$ and 15 ips standard. $33 / 4$ and $71 / 2 \mathrm{ips}$ or 15 and 30 ips available on special order.
Tape Width:	Normally 1-, 1/2-, or 1/4-inch tape.
Reel Sizes:	NAB hub. Adaptable to CCIR or small plastic reel hubs. Standard reel $10 \mathrm{l} / 2$-inch diameter. Alternatively, $11 \mathrm{l} / 2$-inch diameter reels can be furnished for CCIR applications. Large 14 -inch reel diameter capability is available.
Flutter:	Speed Flutter Band Maximum \% (ips) (Hz) Flutter (rms)
	$150.5-300$ 0.04\%
	$150.5-5000$ 0.05\%
	$71 / 20.5-300$ 0.07\%
	$71 / 20.5-5000$ 0.09\%
	All measurements of flutter are made by recording a tone on the machine under test, rewinding the tape and measuring flutter on replay. Maximum additive phase case accepted as maximum flutter.
Start Time:	0.5 second to stable motion in play or record mode for $1 / 4$-inch or $1 / 2$-inch tape, 1.0 second for 1 -inch tape.
Stopping Time:	0.8 second from play or record mode.
Timing Accuracy:	$\pm 0.10 \%$
Rewinding Time:	60 seconds for 2400 feet.

Table 2. Specifications (Cont'd)

CHARACTERISTICS	SPECIFICATIONS
Weight/Dimensions: Console: Tape Transports: Electronics Assembly: Portable: Tape Transport Controls:	Tape transport and electronics assembly have standard 19 -inch wide rack mounting panels with commercial notching. $661 / 2$ inches high (with four electronics modules), $263 / 4$ inches wide, $241 / 4$ inches deep. Approximate weight (complete) 300 lbs . $153 / 4$-inch panel. Weight approximately 65 pounds. $51 / 4$-inch panel. Weight approximately 15 pounds per assembly. (One electronics assembly required for each channel recorded: NAB or 3M Dynatrack channel). Complete in two drawn aluminum cases. Electronics case: 21 inches long, $111 / 4$ inches wide. 18 inches high. Weight: approximately 85 pounds with three electronics modules. Tape transport case: 21 inches long, 12 inches wide, 18 inches high. Weight approximately 85 pounds. All are inoperative until tape is placed in the operating path which activates the controls and illuminates the STOP button. PLAY button starts tape in motion at running speed selected with HI-LO switch. May be activated from any other mode including high speed FORW ARD or REWIND through automatic stop sequence without damage to tape. RECORD is functional only when pressed with PLAY button. Any or all channels can be locked off to prevent accidental recording. FORWARD places tape in high speed forward and operates tape lifters. REWIND similarly places tape in rewind mode and operates tape lifters. STOP referses torque to brake tape dynamically. When tape stops, braking torque is removed and slight holding torque is applied to prevent tape slack.

Table 2. Specifications (Concluded)

CHARACTERISTICS	SPECIFICATIONS
Optional Console Electronics Mounting:	Electronics modules can be mounted below the tape transport in the console cabinet. The volume level (VU) meters are then mounted side-by-side on a single panel just above the tape transport.
Editing Foot Switch:	Used during tape editing to free operator's hands for splicing tape. Permits starts, stops, andintentional tape "spills" as required for rapid editing.

INSTALLATION

RECEIPT INSPECTION

The 3M Brand Professional Audio Recorder was inspected, completely checked out, and adjusted before leaving the factory. Immediately upon receipt, inspect the equipment for any shipping damage. If any damage is noticed, notify the carrier immediately. If everything is normal, proceed with the installation.

GENERAL

As previously described, the system comes in three basic models: console, portable, and rack mounting. Console models are completely connected and ready for operation when unpacked and the power and signal connections are made. The portable models require, in addition to the power and signal connections, interconnecting cables between the tape transport and electronics. The rack mounting models require the same electrical connection as the portable model; in addition, they must be installed in a 19 -inch equipment rack.

This section contains installation instructions for each of the three models, plus instructions for each of the standard accessories.

LOCATION CONSIDERATIONS

The tape recorder system can be installed in almost any location as long as reasonable judgement is used. The system should not be installed in an extremely dusty or damp location. Strong magnetic fields should be avoided, such as from power transformers and tape degaussers. The tape recorder can probably stand high temperatures much better than its human operator; however, if the recorder is to be installed in an equipment rack, it should not be mounted above a chassis with vacuum tubes or anything which generates a large amount of heat.

The tape recorder system can be remotely controlled. The standard remote control cables are 5 and 25 feet long; however, longer cables can be used.

CONSOLE MODEL INSTALLATION

Console models are shipped from the factory ready for operation. They are crated according to standard commercial practices, depending upon their destination. In some cases, the crating may be extensive and the receiver must be careful when unpacking not to damage the equipment or discard any separately packaged accessories. When the equipment $1 s$ uncrated and located in its operating position, it only requires power and signal connections to be ready for operation;
plus connection of some accessories. Instructions for making these connections are given in the following paragraphs. Dimensions of the standard console models are given in figure 10 .

RACK (OR CUSTOM) MOUNTING

For rack mounting or custom installations the equipment and interconnecting cables are shipped as separate items ready for installation into a 19-inch equipment rack. Figure 11 gives the outline dimensions. Figure 12 illustrates a typical rack mounting installation. Cable connections and signal interface information is presented in the following paragraphs of this section.

The electronics assemblies and transport are packaged according to commercial practices. In addition, the transport is contained in a wooden shipping crate. To remove the transport from the wooden shipping crate, pry the top of the crate off. (It is nailed on.) There are cutouts at each end of the crate so that the transport can be grasped and lifted out.

Remove the tape transport from its shipping crate and install it as follows:

1. Position the capstan assist spring for vertical or horizontal mounting, as required. See figure 14 .
2. To expose the transport mounting rails, it is necessary to remove the transport front cover plate. This is secured by two screws at the top of the transport and a lip at the bottom. Remove the two screws and slide the cover from the lip.
3. Attach the transport to the mounting rails, using eight 10-32 screws, washers, and lock washers; four on each side.
4. Reinstall the transport front cover plate.

The maximum distance between the transport and the electronics assembly is determined by the control and head cable lengths. From the transport connector to the first electronics assembly connector is 36 inches. The remaining connector loops are 12 inches apart. The head cable set is 66 -inches long.

To install the electronics assembly, open the front cover and attach to the mounting rails with four 10-32 screws, washers, and lock washers. When the electronics assembly and transport are installed, make the cable connections as shown in figure 14, and listed under "Electrical Connections".

NOTE

Note that each of the cards in the electronics assembly has a number on it indicating the channel. This should be considered when arranging the electronics assemblies.

Figure 10. Outline Dimensions, Console Models

Figure 11. Outline Dimensions for Rack Mounting and Custom Installations

Figure 12. Typical Rack Mounting Layout

PORTABLE MODEL INSTALLATION

Outline dimensions for the portable models are presented in figure 13. Of course, this equipment requires no physical installation. The equipment inside is attached to the case by shock mounts. Installation consists of removing the covers and making the electrical connections shown in figure 14 and listed under "Electrical Connections," as required. Also, connection of the capstan assist spring must be considered. This is also shown in figure 14. Signal interface information is present under that heading in this section.

ELECTRICAL CONNECTIONS

As previously stated, the console model is shipped with all internal cabling connected. It only requires that the power cable and the external signal cables be connected, plus accessories such as the edit foot control and remote control. In addition, the rack mounting and portable models require connection of the power and control cable, and head cables between the transport and electronics assemblies. All of the cable connections are illustrated in figure 14 , and each is detailed in the following paragraphs. Disregard any connection that does not apply to your equipment.

NOTE

The circuit boards in each of the electronics assemblies have numbers on them indicating the magnetic head channels used to set up the electronics at the factory. These numbers should match when the equipment is installed. If they do not, the electronics should be readjusted before operation. For consistency, the channel numbers, the circuit board numbers, and head channel numbers should match throughout the system.

Power and Control Cable

Connect the power and control cable to the ELECTRONICS receptacle on the tape transport and to the POWER receptacle on each of the electronics assemblies. There are two power and control cables used. Cable 23028A050 accommodates four electronics assemblies, and cable 23028A060 accommodates eight electronics assemblies. It is not necessary that all connector loops of the cable be connected. If only two electronics assemblies are used, for example, and cable 23028A050 is supplied, there will be two extra connectors on this cable.

Figure 13. Transporter Case Outline Dimensions

Head Cables

If the tape transport is shipped with magnetic heads already installed, the head cables connector will probably be installed on the transport. If it is not, the end of the head cable with the single connector and bracket must be installed in its proper position on the transport. The head connector is located in a recess to the left of the capstan as viewed from above. Orient the cable connector properly and install it by securing it with two No. 4 screws, washers, and lock washer. By attaching this cable to the transport, the head assembly can be removed and installed from above without disturbing the nead cable connector.

For tapes recorded on one recorder to be compatible with tapes recorded on other recorders, the head cables must be connected to the electronics assembly as shown in table 3. Head cables marked with a P are from the play heads, and must be connected to the REPRODUCE HEAD connectors for the channels indicated. Head cables marked with an R are from the record heads and must be connected to the RECORD HEAD connectors for the channel indicated. Cables marked with an E are from the erase head and must be connected to the ERASE HEAD connectors for the channels indicated.

Signal Connectors

Connect the input and output connectors for each channel to the SIGNAL IN and SIGNAL OUT connectors. These are standard 3-wire XL type connectors. Interface information is given under that heading in this section.

Remote Meters

If remote meters have been ordered, plug them into the REMOTE METER connector. Refer to the interface information for the remote meters under that heading in this section.

Pilot Tone

If a pilot tone is to be used, make this connection to the PILOT connector. Refer to the interface information for the pilot tone under that heading in this section.

Remote Control

If a remote control unit is to be used, connect the connector from the remote control to the REMOTE connector on the tape transport.

Edit Foot Control

If an edit foot control is used, connect it to the SPILL CONTROL connector on the tape transport. It is necessary to remove a jumper plug to make this connection. Do not misplace the jumper plug, since the machine will be inoperative without it if the edit foot control is later disconnected.

Power Cord

Pull back the shipping restraint latch from the power receptacle and plug the power cord into the tape transport. Then connect the other end of the power cord to a $115-$ volt 60 Hz power source.

CAPSTAN ASSIST SPRING

When the tape transport is mounted in a vertical position, an assist spring is required to hold the capstan motor out of engagement with the flywheel when it is not running. This spring is stored across the two lugs on the supply reel motor when the tape transport is shipped, or when it is installed for horizontal operation. For vertical operation, this spring must be connected between the supply reel motor and the capstan motor bracket. See figure 14. For console and rack mounting installations, it is only necessary to consider the capstan assist spring when the equipment is installed. However, since portable models can be operated either vertically or horizontally, the position of this capstan assist spring must be considered each time the equipment is set up.

REPRODUCE ONLY ELECTRONICS ASSEMBLY CONNECTIONS

The reproduce only electronic assembly requires three different connections: power and control cable, head cables, and signal output cables. The channel numbers run from right to left, looking at the rear connector panel. The connections are as follows:

1. Connect the power and control cable from the ELECTRONICS connector on the tape transport to the connector on the electronics assembly.
2. If the head cable is not connected to the transport, attach it as described under "Electrical Connections." Connect the channel head cables to head cable connectors on the electronics assembly. Be sure that the head cable numbers and the channel numbers are the same.
3. Connect the signal output cables to the XL type connectors. Be sure that the proper channel identification is maintained. The cables should be made up as shown in figure 16. The output impedance is 600 ohms.

Table 3. Standard Dynatrack and NAB Head and Signal Cable Connections

INTERFACE INFORMATION

All input and output connections and circuitry of the Professional Audio Tape Recorder are based on standard operating procedures in the recording industry. Standard 3-wire XL type connectors are used for the signal inputs and outputs. Cables should be made up in conformance to standard practice as to length, shielding, etc., with connections as in the following paragraphs.

Signal Input

To bridge a balanced studio line, connect the line to pins 2 and 3 of an XL male plug (figure 15) and insert it into the SIGNAL IN socket. Connect the ground to pin l. Input level of -10 to +8 dbm based on the signal level in a 600 -ohm line may be employed as a signal source. The load is approximately 20,000 ohms.

An unbalanced line source should be connected to pins 2 and 3 of the connector. Ground should be connected to pins 1 and 2. See figure 15. This provides a 20,000-ohm bridging input for signal levels as above. Pin 3 could be grounded rather than 2 without degradation of performance, but pin 2 is suggested as first choice in the interest of consistency.

Figure 15. Signal Input Connector Wiring

Signal Output

The output signal for connection to line facilities is to be fed from the male SIGNAL OUT connector to an XL type female connector on the outgoing cable. Use pins 2 and 3 for the signal output with pin 1 as ground. See figure 16 .
A balanced line may be fed from 2 and 3 , or an unbalanced line may be fed by grounding either 2 or 3 . In the interest of consistency, it is suggested that 2 be employed as ground and 3 as the signal lead.

Two switches are provided on the rear panel of the electronics just above the SIGNAL OUT connector. The OUTPUT IMPEDANCE switch provides for selection of 150 or 600 ohms output line impedance and the TERMINA TION switch provides for proper terminating impedances for either 150 or 600 ohms, if needed. If the outgoing line is properly terminated elsewhere, set this switch to the OFF position.

Note that the positions of these switches will affect the reading of the VU meter as much as 2 db . This meter is normally calibrated to read the proper levels in a +4 dbm 600 -ohm line. It may be recalibrated by adjusting resistors in the line amplifier board. A chart of values for the selectable resistors is given under the discussion of this board in the Functional Description.

Figure 16. Signal Output Connector Wiring

Remote Meter

A remote VU meter may be connected to pins 1 and 4 of this connector. See figure 17. It is essential that it be "built out" with a resistor network identical to the one set up on the Line Amplifier Board for the local meter and as shown in figure 17. Select the values of R1 and R3 from table 10 for the proper line operating level.

The remote meter will indicate the same signals, input or output, as the local VU. It will not give indications of bias and erase current. Power to illuminate lamps in the remote meter is available on pins 3 and 6. Maximum drain should be 150 ma at 28 volts. A resistor is provided for in the Meter and Power Supply Assembly (R10) which may be selected to provide different degrees of lamp brightness.

Figure 17. Remote Meter Connector Wiring

Pilot and Loudspeaker

This connector is provided to permit insertion of a reference tone, subsonic or supersonic, onto the track being recorded and to permit extraction of the tone on playback without having the level of either the recorded or reproduced pilot affected by adjustment of the front panel record or playback gain controls. The pilot tone to be recorded is applied at pin 1 with grounded return on 4 . The reproduced pilot is on 2 with grounded return on 5 . See figure 18 .

This connector is also used to provide signal to an external monitor loudspeaker if desired. The speaker is to be connected to pins 3 and 6 , and will operate at reasonable monitoring volume level when the VU is set up for +4 dbm lines. It will be 4 db louder when the VU is set for +8 dbm lines and so on. A simple attenuator may be installed on the speaker to reduce its volume.

Phones

Monitor earphones may be plugged into the PHONES jack on the front panel. High impedance phones are to be used. Neither side of the circuit is to be grounded. The phones will monitor either the input or tape playback, the same as the VU meter, which is the signal being fed to the output line.

CAUTION

A ground on either earphone lead will upset the characteristics of the line amplifier so that it will feed improper level to the meter and line and may go into oscillation.

Figure 18. Pilot Connector Wiring

Auxiliary Ground

A ground terminal is furnished on the transport frame. It may sometimes be desirable to connect this to a good ground to minimize electrical noise, although this is generally unnecessary if the power cord ground is sufficiently noisefree.

OPERATING CONTROLS AND DETAILS

In this section are considered all controls which are directly accessible from the top surface of the transport and from the front surface of the electronic assemblies. Internal adjustments to be made with screwdriver or wrench are discussed in the Alignment and Adjustment section.

TAPE TRANSPORT CONTROLS

The normal operating controls are located in the lower right-hand corner of the transport. See figure 7. These five illuminated pushbuttons control all tape movement through a system of safety interlock relays that prevent malfunction because of improper operation. Any button can be pushed in any sequence, at any time, with complete safety to the tape and machine.

PLAY Button

This causes the transport to move the tape at normal forward or record speed under capstan speed control. The transport can be placed in PLAY at any time from any tape mode. For recording, both the PLAY and RECORD buttons must be pushed simultaneously when tape is either at standstill or in the normal forward, play mode.

FORWARD Button

Activates the high speed tape advance in the forward direction. The fast forward mode may be initiated without pressing the STOP button. In fast forward, the tape lifters are activated and the head shield opens. The tape lifters may be manually overriden to allow tape to be heard. When the STOP button is operated from this mode, dynamic braking is used to stop tape, then a slight holding torque is applied to maintain tape tension.

NOTE

Magnetically operated reed switches, operated from a direction sensitive vane under the takeup reel turntable, control the dynamic braking and electrical switching when the transport is taken out of FORWARD or REWIND mode. This vane is a sensor to determine the direction the tape is traveling. The appropriate reed switch then activates relay control circuits which place the transport in either FAST, FORWARD, or REWIND, preliminary to the STOP mode, depending upon the original direction.

STOP Button

This button stops all tape motion from any mode of operation. It also indicates when the transport is ready for operation. It is illuminated when the transport power is on and tape is threaded in the tape path. Without tape in the tape path, the unit will not operate and this button will not be lit. When the STOP button is activated while tape is in the high speed mode, dynamic braking is applied until the tape stops. Then, the transport goes into the STOP mode and a light holding torque is applied by both motors to maintain tape tension.

REWIND Button

Tape may be put into high speed rewind from any other mode of operation, even from fast forward, without danger of tape breakage. Tape lifters on both heads operate during high speed rewind and the headshield opens. The tape lifters may be manually overridden if you want to hear the tape.

RECORD Button

This button connects the recording circuits to the record head. To operate, the button must be pushed at the same time as the PLAY button is pushed. This must be done when tape is either at standstill or running in PLAY mode. Stopping the tape, or changing the tape mode of operation, automatically deactivates the recording circuits; and the RECORD and PLAY buttons must be pushed again to resume recording. To complete the recording circuit, the recording amplifier switch on the applicable electronic assemblies must be in RDY position.

The remaining controls are mounted in the lower left-hand of the transport.

POWER Switch

AC power to the entire recorder is controlled by this switch.
NOTE

The tape transport will not be energized and the STOP button will not light until tape is threaded into the tape path.

Do not turn the power off when the transport is in a fast tape travel mode (REWIND or FOR WARD). This could throw a tape loop because the dynamic braking will not operate.

A-B OUTPUT Transfer Switch

This pair of pushbuttons provides for simultaneous transfer of the signal outputs of each electronics assembly from the input line to tape playback, or vice versa. The A button sets all channels to monitor the input signal. The B button transfers monitoring of all channels to the output signal.

RUNOUT Switch

NOTE

Apparatus associated with this switch is not normally furnished. It must be specially ordered.

This switch controls the actions of a photo sensor in the tape path. It can be set to automatically stop the tape, or to automatically rewind the tape. The switch circuits will also automatically start another tape machine. To activate the circuits, punch a $1 / 4$ inch hole in the tape, or remove the oxide with solvent $3 / 8$ inch above the lower edge of the tape at the point where one of the automatic operations is desired. When the hole passes the sensor, the tape will automatically stop, or rewind, depending upon the position of the switch. When the switch is in the center (NORMAL position), the automatic feature is inactive. When no hole is made in the tape, the unit will automatically shut off when the tape runs out.

SPEED Switch

The SPEED switch selects either of the two speeds at which the machine operates. These are normally $71 / 2$ and 15 ips ; however, other speed pairs are available.

CAUTION

This switch should not be oper ated with the capstan motor running. Power must be off or tape not threaded.

BALANCE Switch

This 3-position switch changes motor torque factors to compensate for reels of different weight and/or size. When both reels are identical, the switch remains in the middle, or BALANCED position. If the left reel is larger or heavier, the switch should be in the left position. If the right reel is larger or heavier, place the switch in the right position.

TAPE TRANSPORT, TAPE HANDLING COMPONENTS

The following tape components are in the capstan handling assembly area. See figure 19.

Reversing Idler

Tape is threaded around this free-wheeling idler, which helps provide an extremely short path of unsupported tape. Ridges in the idler provide for air passage during high-speed tape movement, so that the tape hugs the idler.

Editing Index

The tri-colored bars and dots on top of the reversing idler are used for precision editing, as described in the section on editing.

Head Assembly

All head stacks, erase, record and play, are mounted on a single plug-in precision plate which is mounted on the transport casting beneath this head cover. The trim plates must be removed in order to remove the head assembly.

Azimuth of record and playback heads may be adjusted by removing the head cover plate located between the capstan and reversing idler.

Tape Lifters

The tape lifters automatically move tape away from heads during high-speed tape travel to reduce head wear and cut chatter. They are electrically interlocked with the playback head shield door so that the latter opens to make room for the tape when lifters move it away from heads.

The tape lifter may be manually over ridden by pressing the tape lifter and override lever. This restores the tape against the head so that it may be heard.

Head Shield Door

The head shield door provides for hum reduction and automatically drops away from head during high-speed tape travel and whenever tape is lifted from tape path. This allows easy removal of tape for editing, etc.

Capstan

The differential capstan is the basis of the patented Isoloop system for transporting tape with extremely low flutter and wow. Its function and operation is described in the General Description Section.

Figure 19. Tape Drive Components

Capstan Idler (Incoming)

This idler is designed to clamp the tape to the smaller diameter parts of the capstan. The capstan thereby unwinds tape from the supply reel and feeds it into the loop. In starting, this idler moves in slowly after initial contact so as to gently accelerate the tape to running speed. Only after tape has had sufficient time to get up to speed does the outgoing idler function.

Capstan Idler (Outgoing)

This idler pulls the tape through the head assembly at a slightly higher rate than the tape is fed in because it presses the tape to the capstan at its larger diameters. This maintains a constant tape tension across both heads, but the tension does not exceed the stretch capabilities of the tape. It is moved into position directly without retardation of dashpot as provided on the ingoing idler.

Tape-Threaded Sensor

This photoelectric circuit across the tape path provides both convenience and safety. Whenever the tape breaks the light beam, a slight holding torque is applied to the reels to maintain tape tension. When there is no tape in the path, the reel motors are deenergized, the tape turntables are free-wheeling, the head cover opens, and all pushbuttons are deactivated. This allows for easy removal of the tape for splicing. Also, when the end of the tape is reached, the motors stop quickly, minimizing tape whip-around.

Edit Post

This is a sharp edge that puts a crimp in the tape when it is pressed against the post. When used in conjunction with the editing aid on the reversing idler, it provides for easy, trouble-free editing.

Reel Holders

Standard reel holders are supplied for holding down 10-1/2 inch NAB reels. Rotating the upper portion of the holder, when a reel is in place, locks the reel on. This is useful when the machine is mounted vertically. Locking is not necessary when transport is horizontal or at a slight angle. Removal of the large center screw permits changing to different hub types. Only $1 / 4$-inch systems are supplied with NAB reel holders, which çan be removed by rotating the center post. When the NAB holder is removed, the center post will accommodate the small plastic cinema reels.

ELECTRONICS ASSEMBLIES

Electronic controls, except for the record control, are located on the electronics assembly for each channel. These controls are shown in figure 20 and their description follows.

RECORD LEVEL Control

This adjusts the signal level recorded on the tape. It may be adjusted through a line input level range of -20 dbm to +8 dbm (600 ohm line). To monitor the signal audibly, or to read the level of the incoming line, the METER switch is set to SIGNAL and the OUTPUT SELECT set to A. After the level is properly adjusted, the knob may be locked by turning the ring behind it in a clockwise direction.

REPRO. LEVEL Control

This adjusts the playback gain. It is a locking control. It is not necessary to calibrate a level setting for this control by employing a standard tape and then locking the control in place. This is because the METER switch has a calibrate (CAL.) position which substitutes a fixed pad for the REPRO LEVEL variable gain control whenever it is desired to calibrate levels. The REPRO LEVEL control is only in the normal tape playback path. The OUTPUT SELECT button B must be pressed to transfer the meter and output line to the playback circuit.

Figure 20. Electronic Controls

REC. SELECT Switch

This has three positions affecting only the record circuits.

1. RDY. In this position, the circuits for the particular channel are ready to record. If the RECORD and the PLAY buttons on the transport or its remote control unit are pressed simultaneously, the record circuits will be activated and the red REC lamp will light. In an NAB configuration, the eraser and the record head for this track will be activated. In the Dynatrack configuration, no eraser is activated, but both tracks of a single channel will be energized.
2. SAFE. In this position, the erase and record circuits will be locked off so that accidental erasure or damage to a previously recorded tape will not occur should the record mode be selected at the transport or remote control.
3. O. DUB. This is the overdub position. This prevents the record and erase circuits from being energized and substitutes the record head in place of the normal playback head for this track in the NAB configuration. In the Dynatrack setup, it substitutes the HI record head in place of the normal HI playback head. The LO track remains unaffected. In the overdub position, a performer can listen to a previously recorded track while adding a new part in perfect synchronism on another track. This is because the signal he is hearing is being played from a record head in the same stack as the head he is using to add the new recording. There is thus no time separation between the two.

METER Switch

This switch has four positions affecting the function of the meter and influencing the signal output level.

1. CAL. This is a calibrate position. When it is selected, the REPRO LEVEL gain control is removed from the playback amplifier and a fixed attenuator is substituted. Thus, a known overall gain can always be checked as a reference. An adjustable gain control in the preamplifier is set to give proper meter level readings from a standard reference tape.

The switch may then be set to the SIGNAL position where the variable REPRO LEVEL control permits operating playback gain adjustments, as necessary.
2. SIGNAL. In this position, the meter monitors either the input signal, A, or the playback signal, B, depending on which OUTPUT SELECT indicator is lit, A or B. Similarly, the signal fed to the outgoing line (SIGNAL OUT) is either A or B.
3. ERASE. In this position, the meter shows a steady deflection, depending upon the magnitude of the high frequency current in the erase head when in the standard NAB configuration. In the Dynatrack configuration, the meter reads the magnitude of high frequency bias current in the LO track. The output signal to the line remains under the control of the A-B OUTPUT SELECT switches the same as described above under SIGNA L.
4. BIAS. In this position, the meter reads the magnitude of high frequency bias current in the regular NAB record head or the HI track record head in the Dynatrack system.

OUTPUT SELECT Switches

These consist of the illuminated A-B buttons mentioned above. Whenever the METER switch is in any position other than CAL, these buttons determine the source of signal to be fed to the outgoing line (SIGNAL OUT connector). When the A button is pressed and the A lamp lights, the input signal is being monitored and is the signal output. When the B button is pressed and the B lamp lights, the outgoing signal is then connected to the playback circuits to monitor the signal reproduced from tape. The A-B transfer buttons on the transport can switch all channels at the same time, but individual channels remain under control of their A-B buttons.

A small slide switch on the Line Amplifier circuit board will inactivate the automatic A-B transfer, if desired. When inactive, the transfer is solely under control of the A-B buttons on the particular electronics assembly.

REC. Indicator

This is a recording indicator lamp to show when the record and erase circuits are energized. It is under control of the RECORD button on the transport but may be locked out of service by placing the REC. SELECT switch in either the SAFE or 0. DUB position rather than its normal RDY. position.

PHONES Jack

This jack is provided to drive a high impedance earphone, which bridges across the output signal line. Since this is usually operated as a balanced circuit, neither side of these phone may be grounded.

This description of the controls on the electronics module covers all controls and indicators normally referred to in the course of operating the recorder. The front cover door hinges down to reveal a series of plug-in electronic boards which contain a number of screwdriver adjustable components. These are normally not adjusted by operating personnel. Maintenance personnel employ them to trim a machine into peak performance. They are referred to under Alignment and Adjustment, Routine Maintenance, and Circuit Descriptions.

GENERAL OPERATING PROCEDURES

PRELIMINARY

Slide the plate (see figure 7) covering the slide switches to the left so that it covers the POWER switch and reveals the three slide switches. Set the SPEED switch to either HIGH or LOW as desired. Set the RUNOUT switch to its midposition, NORMAL. Identical large reels should be used on both reel spindles. If this is done, set the BALANCE switch to its mid-position. Slide the switch cover to the right, revealing the POWER switch and A-B OUTPUT buttons.

THREADING

Threading the recorder is extremely simple, as there are no compliance arms or other mechanical devices in the tape path. See figure 2l. Also, there is no tension on the tape until it breaks the photoelectric circuit in the Isoloop assembly, so the reels are free-wheeling, To thread, first push the POWER button to turn the machine on. Place a roll of tape on the left hand spindle in such a manner that the reel rotates counterclockwise when tape is unwound. Take the tape from the supply reel, drop it between the capstan and the incoming idler, past the record head, around the reversing idler, past the play head (the head shield is open), between the capstan and outgoing idler, then onto the takeup reel. Thread the tape onto the reel hub so that it will wind in a counterclockwise direction. As the tape breaks the photoelectric light path after the outgoing idter, a slight holding torque is applied which takes up any slack in the tape. The transport is now ready to operate.

Observe that the control buttons function in the manner intended and that they are each illuminated in their operating mode. Observe that the playback head cover door closes when the machine is started in the play or record mode and that it opens when the tape lifters raise tape off the heads in fast forward or rewind modes.
Observe that in standby with tape threaded in place, the head cover door will remain either open or closed when operated manually. Observe that this door, if closed in standby, will open if tape is lifted from its running path at the right hand guiding system prior to reaching the takeup reel.

MONITORING

All electronics assembly adjustments described in the following paragraphs are for a single recording channel. In multichannel machines, perform the procedure for each channel of electronics.

Figure 21. Tape Threading
Signals to be recorded and reproduced can be monitored by: (1) the VU meter on the electronics assembly, (2) an earphone (high impedance, ungrounded) plugged into the PHONES jack, (3) a loudspeaker connected directly to the PILOT connector at the rear of the electronics assembly (terminals 3 and 6), or (4) from the signal output coninector on the rear panel.

To monitor the recorder input signal, set the METER switch to SIGNAL and press OUTPUT SELECT button A. The signal amplitude will be under control of the RECORD LEVEL knob.

To monitor signals reproduced from recorded tape press the OUTPUT SELECT button B. The REC. SELECT switch should be in either RDY or SAFE positions. With the METER switch in the SIGNAL position, the REPRO. LEVEL knob will determine the loudness of the monitored signal.

To determine the true magnitude of signal level on the tape, place the METER switch in the CAL. position. The loudness and meter reading are then determin 3 d by a fixed calibrated amplifier gain rather than the variable REPRO. LEVEL control. The A-B OUTPUT transfer buttons on the tape transport can switch all channels of a multichannel system at the same time.

RECORDING

Set the RECORD LEVEL knob and the REPRO LEVEL knob to minimum (fully counterclockwise).

Set the REC. SELECT switch in the RDY. position. In Dynatrack systems, previously degaussed or new tape must be used. In NAB systems with erase heads, new, degaussed, or previously recorded tape may be used.

Set the METER switch to the SIGNAL position.
Press OUTPUT SELECT button A.
Slowly increase the RECORD LEVEL control until the meter peaks at +2 VU on the loudest peaks on input program material. The signal should be clearly heard in the monitor system. Have the program source cut off by fade or switching. Listen for acceptability of residual noise, particularly low frequency hum. For truly critical applications, for which this machine is designed, a vacuum tube voltmeter should be used to determine residual circuit noise. Recorder-contributed noise in this test will generally be well below external circuit noise. Have the program feed restored at the former level.

To start recording, simultaneously press the PLAY and RECORD buttons on the tape transport. These two buttons should light and the red REC. indicator on the electronics panel should also light.

Press OUTPUT SELECT button B. Slowly increase the REPRO. LEVEL control until the signal is audibly and visually the same loudness as the input signal. This can be easily determined by alternately pressing the A and B buttons. Listen critically on a good monitor speaker system to be certain the signals sound identical in either the A or B position after their levels are set as closely the same as possible.

Cut off the input signal and listen for noise. No increase in hum should be observed in the B position when compared to the A position. In NAB systems, tape noise should be the only additional source of noise observable in playback. In Dynatrack systems, even this should be extremely difficult to observe. Noise measurements are outlined under Alignment and Adjustment.

Press the STOP button. The tape should stop. The REC. indicator should go out.
If A-B transfer from the transport is not wanted, open the front panel cover of the electronics assembly, and position the upper slide switch on the line amplifier board in slot 6 to the OFF position. A-B switching is then solely under control of the $A-B$ buttons on the electronics panel.

PLAYBACK

Playback is accomplished simply by pressing the PLAY button on the tape transport. The B output must be selected.

When the recorder is used for reproducing a previously recorded tape, it is wise to set the REC. SELECT switch in the SAFE position. Should the RECORD and PLAY buttons be pressed simultaneously in error, the recording circuits will still be locked out and the tape protected against accidental erasure.

OVERDUBBING

When ordered, the overdub feature is provided on the playback preamplifier boards. It is controlled by the REC. SELECT switch.

It provides a means of adding a second audio track in synchronism with a first track (or first set of tracks, depending on the number of channels built into the machine).

Consider a two-track NAB machine as an example. We will call the channel numbers 1 and 2. An orchestra is recorded on track number 1 and it is desired to add a synchronized vocal in track number 2 which has been left unrecorded. If track number 1 is played into earphones for the singer's benefit in the normal way from the regular playback head, the singer's voice will be recorded on track 2 displaced on the tape from the orchestra recording by the linear distance from the playback head stack back to the record head stack. The two can therefore never be played in synchronism because of the scanning time differences which arise.

Therefore, it is necessary to play the orchestra track (No. l) from the No. l record head, substituting it for the No. l playback head. The overdub preamplifier provides proper gain and equalization to accomplish this when the REC. SELECT switch is set to the 0. DUB position. Furthermore, this position of the switch locks off its recording electronics as in the SAFE position so that the orchestra track may not be destroyed. The singer's track, No. 2 is left in the RDY. position and the recorder is started in the RECORD mode. The singer then sings in synchronism with the orchestra and both tracks No. 1 and No. 2 are vertically oriented so that there is no time displacement between them. When the singer has finished recording his part, both tracks may be played back through the regular playback head assembly by placing both No. 1 and No. 2 REC. SELECT switches to SAFE.

ERASURE

Erasure is automatic on NAB configurations, since the electronics module is constructed to feed two high-frequency circuits. One of these is the record head bias requirement and the other is the eraser. In the Dynatrack system, the
erase power source becomes the bias source for the second track required by this two track system. To take full advantage of the increased dynamic range and lower noise level provided by the 3 M recorder, all recording should be done with new tape, or tape that has been very carefully bulk erased.

EDITING

Due to the basic simplicity of the Isoloop drive system, plus the advantages of dynamic braking, automatic tape tension and release, and the unique editing feature which is provided on the reversing idler, tape editing is extremely fast, accurate and easy.

To locate the cutting point, follow the normal procedure of "rocking" the reels to and fro by rotating the reel knobs. Because there is only a slight holding torque on the motors, this requires very light effort. Once the cutting point has been found, note the position of one of the colored edit dots on the top of the reversing idler in relation to one of the markings on the scale (figure 22-A). Now move the tape forward by hand approximately $2 / 3$ of a turn of the reversing idler until an edit line of the same color as the dot is opposite the same scale marking (figure 22-B). Now, using your forefinger, press the tape against the sharp edge of the edit post (figure $22-\mathrm{C}$). This puts a light crimp in the tape, precisely marking the point of cutting. Lift the tape out of the tape path, deenergizing the reel motors and allowing the tape to be completely slack (figure 22-D). After making the splice, simply drop the tape back in the tape path. The holding torque is again applied automatically. You are now ready to advance tape to the next editing point.

This simple yet highly precise editing system eliminates completely the need for grease pencils and other makeshift marking devices which require the tape to be cleaned after editing.

NOTE

When extensive editing is to be done, the REC. SELECT switches on the electronics assemblies should be placed in SAFE position to eliminate any possibility of accidental erasure of the tape. because of inadvertent pressure of the RECORD button.

Figure 22. Tape Editing

ALIGNMENT AND ADJUSTMENT

TAPE TRANSPORT

The tape transport has been factory aligned for peak performance. With use it will occasionally be necessary to undertake routine inspection of the machine and check certain adjustments. The following information provides a procedure for thorough check of the tape transport. After the user has followed this procedure a few times, it may be found that certain steps may be checked at less frequent intervals. Location of transport adjustments is shown in figures 23 and 24.

1. Remove the six screws that hold the transport cover plate in place and remove the cover plate. The bottom of the cover is held in place by a lip. No reels are to be on machine.
2. Connect the input power cord to the output of a 7-1/2-amp Variac set to zero volts.
3. Increase the Variac output voltage; at approximately 90 volts, relay Kl should be heard to operate, the POWER button should light, and the tape sensor light should come on. If this does not happen, press the POWER button.
4. Continue to increase the Variac voltage until its dial indicates 115 volts. All five function control buttons should be dark and no motors, including the fan, should be operating. The illumination level of the POWER button should not change.
5. Place a piece of opaque material in the tape path between the tape sensor light and the tape-threaded sensor. This will be referred to hereafter as the "tape sensor mask." The STOP button should light. The takeup motor should rotate at approximately 55 to 80 rpm in a counterclockwise direction. The rewind motor should rotate slightly faster (approximately 60 to 85 rpm) in a clockwise direction. The capstan motor should move forward to engage the flywheel tire and it should start turning, driving the capstan in a counterclockwise direction. The fan should also start at this time.
6. Remove the tape sensor mask. The STOP button light should go out and all motors should stop. The capstan motor should move so that its shaft no longer contacts the tire on the flywheel.
7. Reinsert the tape sensor mask. Move the capstan motor SPEED switch to HI. Observe that it runs at high speed. Remove the tape sensor mask. Move the SPEED switch to LO. Reinsert the tape sensor mask. Observe that the capstan motor runs at half

Figure 23. Tape Transport Adjustments, Top View

Figure 24. Tape Transport Adjustments, Bottom View
speed in the same direction. Remove the tape sensor mask. Return the switch to the HIGH speed position. Reinsert the tape sensor mask.
8. Set the capstan motor fine-speed screw (figure 23) so that it does not depress the foot lever from its highest position.
9. Check the adjustment of the nut on the capstan motor solenoid coupling rod (figure 24) so that, when energized (by the tape sensor mask), the capstan motor shaft makes just sufficient contact with the flywheel tire to bring the capstan up to speed.

CAUTION

Do not stall the flywheel while permitting the motor to run since the rubber may be quickly damaged at the point of contact.
10. A neon indicator operated half wave from the same frequency source as the capstan motor or a stroboscopic lamp triggered from the power line frequency should now be used to check the capstan speed by lighting the strobo disc. A simple but effective circuit is shown in figure 25. The capstan should appear to run slow; that is, the strobe pattern appears to rotate very slowly in a clockwise direction. Use an improvised wire pointer as a reference and observe how many dark or light elements appear to pass beneath it per minute. Use table 4 to determine speed error with a 48 -element strobe wheel on the capstan.

Figure 25. Example of Simple Stroboscope Lamp

Table 4. Capstan Speed Error (for 48 element strobe wheel)

DRIFT ELEMENTS	SPEED ERROR-PERCENT	
	AT 7-1/2 IPS	AT 15 IPS
2	0.056	0.028
4	0.112	0.056
6	0.168	0.084
8	0.224	0.112
10	0.300	0.150

11. Adjust the capstan motor fine speed screw for minimum drift. This should be less than 4 elements per minute, either clockwise (speed too slow) or counterclockwise (speed too fast), when motor is driving the capstan at 15 ips , or a maximum of 2 per minute at $7-1 / 2 \mathrm{ips}$. As the adjusting screw is run in, some drive mechanisms show an initial on-speed indication followed by an overspeed which, with further running in of the screw, restores the speed to normal. The latter is the proper adjustment.
12. Remove and reinsert the tape sensor mask several times to assure that the motor returns to the same seated position by observing if any speed change occurs after such cycling. If there is any change, inspect the solenoid system to be certain linkages are not binding or the solenoid failing to bottom. Never adjust the motor pressure to be so heavy that the solenoid cannot seat fully.
13. Set the Variac voltage to 105 volts and repeat the previous step. If $O K$, return the Variac voltage to 115 volts.
14. Remove the tape sensor mask.
15. Push in the plunger of the incoming capstan pressure roller solenoid by hand (left side of capstan) and back off the pressure roller linkage adjusting screw until the pressure roller does not contact the capstan.
16. Repeat for the outgoing capstan pressure roller.
17. Insert the tape sensor mask and press the PLAY button. The PLAY button should light, and the STOP button should go out. The incoming capstan pressure roller should swing in toward the capstan. Approximately $1 / 2$ second later, the outgoing capstan pressure roller should swing in toward the capstan. In the initial interval, the supply reel motor should accelerate in the rewind direction and the takeup reel motor should quickly race to a high speed. After the $1 / 2$ second initial
interval, the torque on these motors should be noticeably reduced when the outgoing capstan pressure roller swings in. Because both adjusting screws were backed off, neither capstan pressure roller should rotate from contact with the capstan. The above time delay should be about 1 second on 1 -inch machines.
18. Adjust the incoming linkage screw until the incoming pressure is just positively driven by the capstan. Give the screw one more full turn in the same direction. Be certain that the solenoid plunger seats completely on repeated operations.
19. Repeat the previous set for the outgoing pressure roller except give the screw a final $3 / 4$ turn.
20. Remove the tape sensor mask, stopping all motors and releasing the pressure rollers.
21. Reel torque measurements are performed next. For this purpose, it will be necessary to employ a 10 ounce or 1 pound spring scale, preferably with a hooked end, and an empty 10-1/2 inch reel. Drill two holes in one of the reel spokes large enough to accept the scale hook. One of these should be at 2 inches from the center of the reel, and the other at 5 inches from the center of the reel. Use the outer one for heavy torque measurements, the inner one for the low torque measurements.

Place the special reel on the supply reel side and hook the spring scale into the 5 -inch radius. Holding the spring scale firmly in place, reinsert the tape sensor mask and press the REWIND button. The STOP button light should go out and the REWIND button should light. Observe the ounce inches of stall torque. See table 5. Remove the tape sensor mask.

NOTE

Table 5 converts the spring scale reading to motor torque. For values not shown in the table simply multiply the spring scale reading in ounces by the radius in inches to find the motor torque in ounce inches.

Table 5. Spring Scale Reading to Motor Torque Conversion Table

AT 5-INCH RADIUS		AT 2-INCH RADIUS	
SCA LE READING	MOTOR TORQUE	SCALE READING	MOTOR TORQUE
4.0 oz. 4.2 4.4 4.5 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 oz.	20 oz. in. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 oz. in.	3.00 oz. 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00	$\begin{aligned} & 6.0 \text { oz. in. } \\ & 6.5 \\ & 7.0 \\ & 7.5 \\ & 8.0 \\ & 8.5 \\ & 9.0 \\ & 9.5 \\ & 10.0 \end{aligned}$

22. Remove the special torque measurement reel from the supply side and place it on the takeup side. Place the spring scale at the 5 -inch radius. Replace tape sensor mask and, holding the spring scale firmly in place, press the FORWARD button. The STOP button light should go out and the FORWARD button should light. The torque should be the same as for the rewind motor.

NOTE
Torque of either motor will vary somewhat with angular position due to commutation, but the exact value is not critical. Plus or minus 20% is acceptable.
23. Remove the tape sensor mask, stopping the motors. Reinsert the tape sensor mask. Press the PLAY button. The starting torque of the takeup motor should be approximately as listed in table 6 for initial period until outgoing capstan pressure roller operates. The torque should then reduce to running torque values listed in table 6.

Table 6. Takeup Motor Torques

TAPE WIDTH	STARTING TORQUE	RUNNING TORQUE
$1 / 4$ in.	12 oz. in.	8 oz. in.
$1 / 2$ in.	24 ox. in.	8 oz. in
1 in.	$35 \mathrm{oz}$. in.	8 oz. in.

24. Remove the tape sensor mask. Put the special reel and spring scale on the supply reel spindle, using the 2 -inch radius hole. Replace the tape sensor mask. Press the PLAY button. The starting torque should as listed in table 7 , reducing to the running torque listed in table 7 after operation of outgoing capstan pressure roller.

Table 7. Supply Motor Torques

TAPE WIDTH	STARTING TORQUE	RUNNING TORQUE
$1 / 4 \mathrm{in}$.	$7 \mathrm{oz}$. in.	$5 \mathrm{oz}$. in.
$1 / 2 \mathrm{in}$.	10 oz . in.	7 oz . in.
1 in .	$15 \mathrm{oz}$. in.	$10 \mathrm{oz}$. in.

25. The required torques will generally be realized if the sliders on R6l and R62 are set to maximum resistance for $1 / 4$-inch tape, midway for $1 / 2$-inch tape, and $3 / 8$-inch from minimum end for 1 -inch tape.
26. Remove the tape sensor mask. Remove the spring scale and reinsert the tape sensor mask. Check that the LARGE REEL switch is in the center position. Hold the takeup motor by hand so that it cannot turn. Press the FORWARD button. The supply reel motor should rotate slowly in a counterclockwise direction. Slide the LARGE REEL switch to the right. The motor should stop. Slide it to the far left. The motor should run, as in the center position. Remove the tape sensor mask. Place the LARGE REEL switch in the center position.
27. Replace the tape sensor mask and repeat the previous step, holding the supply reel motor and pressing REWIND button. The takeup reel motor should rotate slowly in a clockwise direction. Slide the LARGE REEL switch to the left. The motor should stop. Slide it to the right. The motor should run, as in the center position. Place the switch in the center position and remove the tape sensor mask.
28. Press the POWER button and shut off the power. Connect a DC voltmeter (50 volt scale) from the collector (stud) of the 2 N 174 regulator transistor (Q 60) to ground. Be careful not to ground the test lead. Press the POWER button. It should show 26 to 28 volts. Insert the tape sensor mask and press the PLAY button. Then press the FORWARD button, and then the REWIND button. The voltage should remain at 26 to 28 volts. Reduce the input line voltage to 105 volts and repeat. Only below 105 volts input should the voltage ever drop below 26 volts. Reset the input to 115 volts.
29. Place a reel of tape on the transport, and thread the tape as described under General Operating Procedures.
30. Press the PLAY button. The head cover door should close smoothly within $3 / 4$ second. The tape should be driven by the capstan and wound up by the takeup reel. In starting, it should accelerate smoothly without snapping from the supply reel or throwing a loose loop within the closed loop area. When properly adjusted, the incoming capstan pressure roller should move quickly to contact the tape and then slowly seat under the control of the dashpot, thereby gently increasing the tape pressure on the capstan and giving it a gentle acceleration. Generally, the dashpot must be adjusted to maximum damping. The fork tangs (as shown in figure 23) may be bent slightly, but carefully, to provide proper puck operation. The outgoing capstan pressure idler operates only after the tape is up to speed.
31. Press the STOP button. The head cover door should open instantly and the tape should stop. A reverse motion for an inch or two is permissible.
32. Press the FORWARD button. The head cover door should be open and the tape lifters should operate. Wind the tape to within 100 feet of its end. Press the STOP button. The FORWARD lamp should go out and the REWIND lamp should light, indicating reversed torque, thus bringing the tape to a standstill, at which time the REWIND lamp goes out and the STOP button lights. The tape lifters should drop back to normal.
33. Press the PLAY button. The tape should start as smoothly as it did at the beginning of the reel. If the tape does not start smoothly because the incoming roller is engaging too slowly, the adjustments in step 30 should be repeated until smooth operation is obtained. An optimum point of sufficient puck pressure and damping of puck engagement must be reached for best tape handling. After adjustment, rewind the tape and repeat all steps from 30 on.
34. Press the REWIND button. Somewhere in the middle of the reel, press the STOP button. The REWIND lamp should go out and the FORWARD button should light, indicating reversed torque is applied. When standstill is reached, the FORWARD lamp should go out, and the STOP button should light, and the tape should come to a stop. A few inches overshoot in the reverse direction is permissible.
35. Press the REWIND button. When tape is up to relatively high speed, press the PLAY button. Reverse torque is applied and, when the tape stops the machine should immediately go into the RUN mode, the tape lifters drop back, and the head cover door closes smoothly.
36. Repeat the previous step except from the FORWARD mode.
37. When in RUN mode, press the REWIND button. The pressure rollers should drop out, the head cover door should open quickly, the tape lifters should operate, and the tape should go into rewind.
38. On tape transports with the runout feature, wash off the oxide from the top half of the tape for about one inch. Head cleaning solvent may be used. Place the RUNOUT switch in the STOP position. Rewind the tape about ten feet, and then press the PLAY button. When the clear spot uncovers the incoming photocell, the machine should stop.

NOTE

All tape transports have the RUNOUT switch; but unless this feature is ordered separately, the associated circuit is not included. Its inclusion can be determined by checking for the light-sensing photocell between the two incoming tape guides.
39. Put the RUNOUT switch in the REWIND position. Rewind the tape ten feet and press the PLAY button. When the clear spot uncovers the incoming photocell, the tape should immediately go into the REWIND mode.
40. Stop the tape. Put the RUNOUT switch in its normal (middle) position. Press the PLAY button. The tape should continue in the RUN mode, past the clear spot without going into STOP or REWIND.
41. Stop the tape and then press the PLAY button. While the transport is in RUN, press the RECORD button. Nothing should happen. While holding the RECORD button depressed, press the PLAY button again. The RECORD button should light. Press the STOP button. The PLAY button and the RECORD button lights should go out.
42. Observe all white relay covers and put the transport through all normal functions looking for sparking contacts. Arcs may be seen through the translucent covers. Particularly look for sparking of contacts 1 and 9 of Kl which controls capstan motor power. Very light arcs are permissible but a bright arc indicates faulty suppressors C4 and R23. These must be functioning or the relay will fail.
43. Check the time required for the head cover door to open and to close as demanded by various functions described above. It should take from $1 / 2$ to $3 / 4$ seconds to close but should open immediately. Adjust the connected dashpot for proper closing time.
44. The tape lifters must swing out fully whenever the tape is in REWIND or FORWARD mode, or in the process of stopping. When released, they must fall back fully so as not to interfere with normal tape motion over the heads. Test their action at the start of a reel, in the center of a reel, and at the end of a reel to be sure they always operate fully and release fully. Check that they do not chatter when the tape reverses direction between FORWARD and REWIND modes. The tape lifters are adjusted by loosening the screw in the end of the shaft, and changing the position of the tape lifter solenoid plunger with respect to the lifter. This can be accomplished from the underside of the transportas showninfigure 24.
45. Be certain that the tape clears the reel flanges with plenty of space to assure freedom from scraping.
46. Record head and reproduce head azimuth is set during signal electronics alignment.

Flutter

Flutter is checked by recording a 3 kHz signal and then playing it back into a flutter meter. This is a simple procedure with a record and playback system. However, with record only, or reproduce only, systems it is a bit more complicated. Flutter in these systems can be checked by using the single record or reproduce head stack, but some signal conditioning is necessary. For instance, if the system is a reproduce only system, a $120-\mathrm{kHz}$ bias signal must be applied along with the

3 kHz signal to the reproduce head. If the system is a record only system, a sensitive preamplifier is required to reproduce the recorded signal.

Flutter checks are useful as a troubleshooting aid in determining which component, or group of components, is contributing to the flutter. Using a D\&R Ltd, Varo, or equivalent flutter meter, in which three bandpasses are provided, components contributing to flutter can be determined, as shown in table 8. The following steps are to be followed in checking the flutter of a normal machine equipped with standard NAB record and reproduce electronics.

NOTE
It is extremely important that all tape guides, heads, capstan surface, puck idlers, capstan flywheel, and capstan motor spud be thoroughly cleaned with alcohol before making flutter checks.

Table 8. Components Contributing to Flutter

WAVEBAND	COMPONENT AREA
0.5 to 30 cps	Flywheel and capstan
30 to 300 cps	Capstan motor and reversing idler
0.5 to 300 cps	Used to check overall flutter up to 300 cps

47. Connect an audio oscillator to the input of the recording electronics. Set the oscillator frequency to approximately 3 kHz (some flutter meters contain their own internal oscillator). Connect the output of the playback electronics to the flutter meter input.
48. Set the capstan motor to high speed (normally 15 ips). Position the tape so that it will start near the beginning of the reel.
49. Record the test signal at 0 VU for approximately 3 minutes. Rewind the tape to the start of the test signal recording.
50. Start the tape and calibrate the input level to the flutter meter. Check the frequency acceptability to the discriminator, then switch to the fullband flutter position (0.5 to 300 cps). Employ 0. 5\% full scale sensitivity. Flutter should not exceed 0.04% at 15 ips , nor 0.07% at $7-1 / 2 \mathrm{ips}$.
51. Since it is possible for flutter components to cancel in playback because the phase of the recorded flutter may be opposite to the same component being generated during playback, it is necessary to stop and start
the tape during playback at least 15 or 20 times and to accept the worst reading, where the recorded and reproducing phases are additive, as the true worst flutter case. This must be done on each test. Do not check flutter with a playback head while recording the carrier with a nother head.
52. Make each flutter measurement at about 100 feet from the beginning of the reel, near the center, and again at about 100 feet from the end of the reel.
53. Identify any prominent frequency components in observed flutter, using an oscilloscope. Sources of such components must be determined and steps taken to minimize them if they cause overall flutter readings to exceed specifications. Several sources-are:
a. Rotation rate of the capstan. A large component at this rate indicates a faulty flywheel tire.
b. Rotation rate of the reversing idler (same rate as capstan).
c. Rotation rate of the ingoing pressure roller.
d. Rotation rate of the outgoing pressure roller (rate close to that of c).
e. Rotation rate of the capstan motor.
f. Rotation rate of the takeup or supply reel.
g. Resonant component of the reversing idler mass coupled to elasticity of the tape; approximately 100 cycles on the idler for $1 / 2$ inch tape. Try running the tape at high speed over the reversing idler. If the latter produces considerable noise, whining, growling, or hissing, it may mean that the bearings have been damaged; in which case the idler should be replaced, since considerable flutter will otherwise be generated. Do not try to repair the idler. Replace it.
h. Magnetic imbalance in capstan motor causing a 60-, 120-, or 180cycle component (60 -cycle motor) or 50-, 100- or 150-cycle component (50 -cycle motor). This is generally prominent at one speed and barely detectable at the other. Make tests at the speed producing the strongest component, if any, and adjust the value of R63 and C64 (see figure 24) to minimize this flutter component. Motors have been trimmed after installation at the factory to minimize this component by the addition small value 600 -volt
tubular capacitors. Further adjustments should seldom be required but are made by adding or removing such trimmers.
54. Disconnect the power cord. The hinged plug cover must swing into position, making it impossible to again plug in the power cord without first lifting the hinged cover. Observe that when the cover is in place over the plug the capstan motor is locked mechanically away from the capstan flywheel so that it cannot swing back and forth in shipment.
55. Be certain the capstan motor counterbalance spring is in the proper position for vertical or horizontal service, as required (see figure 14).
56. Replace the cover plate and return the transport to service.

NAB SIGNAL ELECTRONICS ALIGNMENT

The 3 M Brand Professional Audio Tape Recorder is factory aligned for peak performance. All alignment controls are behind the panel on the front of the electronics assembly and are screwdriver adjusted. See figure 26. For access, simply drop the hinged panel downward. The circuit boards and controls are illustrated by a label on the back of this panel. Alignment and adjustments are described first for NAB systems, followed by those for Dynatrack systems.

NAB Playback Alignment

In the NAB configurations, the playback circuits are normally factory aligned to match Ampex standard alignment tapes as follows:

Speed (ips)	Tape Width (inches)	
	Stock No.	
15	$1 / 4$	$1 / 2$
15	1	$01-31311-01$
15	$1 / 4$	$01-31311-05$
$71 / 2$	$1 / 2$	$46-90006-01$
$71 / 2$	1	$01-31321-01$
$71 / 2$		$01-31321-05$
		$46-90007-01$

LEFT BAY

RIGHT BAY

Figure 26. Electronics Assembly Adjustment Locations

The procedure is as follows:

1. Thoroughly degauss and clean all heads.
2. Place the 15 -ips standard alignment tape on the tape transport. Be sure that card No. 7 or $7 / 9$ is inserted into slot No. 7 .
3. Set the REC. SELECT switch to SAFE and the METER switch to CAL.

NOTE

Be certain that the output impedance and termination switches on the rear of electronics assembly are in the proper position for the connected outgoing line.
4. Remove the head cover plate to expose the head azimuth adjusting screws.
5. Set the transport to operate at 15 ips and press the PLAY button. When the reference tone of 700 Hz appears, the meter should indicate zero VU . If it does within $1 / 4 \mathrm{VU}$, proceed to step 6. If not, adjust the GAIN CAL. control on the board in slot 7 until it does.
6. Play the 10 kHz test tone. The output shall be within $\pm 1 / 2 \mathrm{VU}$ of the 700 Hz reference tone. If not, perform step 9 .
7. Rewind the test tape to the 15 kHz tone, and adjust the playback head azimuth (figure 27) for peak output.
8. Connect the outputs from the reproduce electronics corresponding to the top and bottom playback heads to the inputs (Vertical and Horizontal, respectively) of an oscilloscope to produce a lissajous pattern (any other appropriate method to check phasing may be used). Start the alignment tape at 2 kHz and adjust the playback head azimuth for zero phase error. Check each frequency up to and including 15 kHz for phase error. Check each combination of any two tracks and optimize the azimuth for a phase error of less than 90 degrees.
9. Play the 10 kHz test tone and adjust the HF EQ FAST control on card 7, if necessary, to obtain the output level required in step 6.
10. Run through the rest of the test tape. Overall response should be within $\pm 1 \mathrm{VU}$ from 12,000 to $50 \mathrm{~Hz} .15,000$ may be between +2.5 VU and zero VU. 30 Hz may be $\pm 2 \mathrm{VU}$ from the original 700 Hz reference. Low frequencies may be adjusted with the LF EQ FAST control on the preamplifier board in slot No. 7.

RECORD HEAD AZIMUTH ADJUSTMENT

Figure 27. Record and Playback Head Azimuth Adjustments
11. After making the necessary equalizer adjustments, rewind and replay the standard tape to be certain that all frequencies are within limits.
12. Remove the standard tape, preferable 'tails' out.

The 7-1/2-ips playback alignment is done in exactly the same manner except that the initial 700 Hz tone and the frequency run are at 10 VU below zero VU. They are followed by 700 Hz at zero VU and this should first be observed, as outlined under preceding step 6. Then rewind the tape to the first 700 Hz band, set the METER switch to SIGNAL, press the B OUTPUT transfer button and adjust the REPRO. LEVEL control to indicate -5 VU. The REPRO. LEVEL control is now set 5 VU higher than normal CAL. level, but it permits more accurate readings. Then check for $\pm 1 \mathrm{VU}$ response 12,000 to 50 cycles and $\pm 2 \mathrm{VU} 15,000$ to 30 cps , as outlined in steps 9 and 10. Adjusting $H F E Q S L O W$ and $L F E Q S L O W$ rather than $H F E Q$ FAST and LF EQ FAST. These are automatically switched in when the tape speed is changed. The head azimuth adjustment and GAIN CAL adjustment made at 15 ips should not be disturbed unless $7-1 / 2 \mathrm{ips}$ is to be considered the speed of primary usage.

NAB Record Alignment

The alignment procedure to follow should be carried out, using a length of tape from the supply to be used for subsequent recording, whenever possible. The 3 M Brand Professional Audio Recorder is factory aligned to use 3 M types 201, 202 and 203 tape. It is essential that the preceding playback alignment be checked before record alignment.

15 IPS Tape Speed Alignment

1. Set REC. SELECT switch to RDY., the METER switch to SIGNAL and press the A transfer button. The RECORD LEVEL control need not be adjusted from its normal operating position if it has been locked in place. The LINEARIZER switch on the H and NAB Record Board in slot 4 should be in the OFF position. Connect an audio signal generator to the recorder input (J101).
2. Set the audio signal generator to 1000 Hz and raise the level until the VU meter indicates 0 VU .
3. Check to be sure that meter continues to indicate 0 VU as the oscillator frequency is changed between 30 Hz and $15,000 \mathrm{~Hz}$. If there is more than $\pm 1 / 2 \mathrm{VU}$ deviation in these indications, the reasons must be discovered before continuing with the checkout. Possible reasons may be unstable oscillator output versus frequency, improper termination, shunting capacitance on the input line, or capacitive feed (one lead open between the oscillator or recorder).
4. Listen with a monitor speaker or earphones to be sure no strong noise or hum component is picked up at the input terminals in addition to the oscillator tone.
5. Start the recorder in RECORD mode. Turn the METER switch to CAL.
6. Adjust the BIAS AMP control on the Bias and Erase Amplifier Board in slot 1 to give a maximum indication on the VU meter for the 1000 Hz signal. The maximum should occur at zero VU. If the meter indicates other than 0 , adjust the input signal level for a 0 indication. Turn the METER switch to SIGNAL, press the A OUTPUT button and adjust the RECORD MON. CAL. control on the H and NAB Record Board in slot 4 until it again indicates 0 . Return the METER switch to the CAL position.
7. Set the oscillator to 7000 Hz . Adjust the azimuth of the record head stack to give a maximum indication on the VU meter. Reset the oscillator to $15,000 \mathrm{~Hz}$ and again carefully adjust the record head azimuth for maximum. Using a similar method as in step 8 of the NAB Playback Alignment, adjust the record head azimuth screw (figure 27) for less than 90 degrees phase error between any two tracks.
8. Make a frequency run from 15,000 to 30 Hz and observe the VU meter. If it lies within $\pm 1 \mathrm{VU}$ from 40 to $15,000 \mathrm{~Hz}$, and $\pm 2 \mathrm{VU}$ at 30 Hz , the performance may be considered satisfactory.
9. If the frequency response is not within acceptable limits, adjust the HF EQ FAST control on the H and NAB Record Board in slot 4 to bring response within limits.

7-1/2 IPS Tape Speed Alignment

Having checked the playback circuit and adjusted it for flat response as outlined under NAB Playback Alignment, 7-1/2 inch speed, leave the REPRO LEVEL control set in the position established under that procedure which resulted in the standard tape signals recorded at -10 VU showing -5 VU on the meter. Then proceed as follows:

1. Perform steps 1, 2, and 3 of the procedure outlined under NAB Record Alignment, 15 ips Tape Speed Alignment.
2. Reduce the input signal level so that the meter indicates approximately - 10 VU .
3. Listen with speaker or phones to be sure there is no strong noise or hum component picked up at input terminals in addition to the oscillator tone.
4. Put the recorder into record mode. Press the B OUTPUT transfer button. The meter should indicate approximately -5 VU .
5. Adjust the BIAS control on the Bias and Erase Board in slot 1 for maximum VU indication at 500 Hz . Readjust input signal level if necessary to get -5 VU .
6. Set the oscillator to 5000 Hz . Adjust the azimuth of the record head stack to give a maximum indication on the VU meter. Reset the oscillator to $15,000 \mathrm{~Hz}$ and carefully adjust azimuth for maximum indication. If primary speed of interest is 15 ips, skip this step.
7. Make a frequency run over the range of 30 to 15,000 cycles and observe the VU meter. If it indicates within $\pm 1 \mathrm{VU}$ from 40 to $12,000 \mathrm{~Hz}$, and $\pm 2 \mathrm{VU}$ from 30 to $15,000 \mathrm{~Hz}$, the performance may be considered satisfactory.
8. If the frequency response is not within acceptable limits, adjust the HF EQ SLOW control on the H and NAB Record Board in slot 4 to bring response within limits.
9. Return the signal generator to 500 Hz . Adjust the REPRO. LEVEL control to obtain approximately -10 VU indication. Turn the METER switch to CAL. Raise the input level to obtain 0 VU indication on meter.
10. Press the A OUTPUT transfer button and turn the METER switch to SIGNAL. The meter should indicate 0 VU . If it does not, adjust the RECORD MON. CAL. control on the H and NAB Record Board, slot 4, until a zero indication is obtained. If there is a discrepancy in this adjustment between the $7-1 / 2$ and 15 IPS setting, adjust it for the speed most important to the application.

NOTE

The above procedure permits frequency response measurements to be made at a signal level 10 VU below the zero reference level. This is essential with low speed tapes ($7-1 / 2$ ips or slower) because of the heavy recording preemphasis used for higher frequencies.

Dynamic Range Adjustment (NAB)

1. Connect the signal generator to a calibrated attenuator box and terminate the output of the box. Feed this output to the input of the channel under test. Connect a distortion analyzer and a vtvm to the output terminals. Use a reel of tape of the type for which the recorder has been aligned. The tape speed should be 15 ips .
2. Before beginning noise measurements, it is absolutely essential to degauss and clean all heads very carefully. Turn off the main recorder power switch during degaussing. Connect a high gain power amplifier and loudspeaker to the output terminals of the recorder. Short circuit the input terminals. The METER switch should be set to ERASE with the B OUTPUT lamp lit.
3. Advance the monitor gain so that the tape noise is heard loudly.
4. Remove the 3 N card. Press the RECORD button. Adjust the NOISE BAL. control on the Bias and Erase board in slot 1 to minimize thumping and popping noises. Press the STOP button.
5. Reinstall the 3 N board, using an extender board. Press the RECORD button. Adjust the ERASE AMP. coupling capacitor on the 3 N board to attain minimum audible noise. The point of minimum noise will be found either slightly above or below peak erase current, as observed on the meter.
6. Press the STOP button. Remove the extender board and plug board 3 N into its normal position. Check again to be certain that noise has not increased.
7. Reduce the monitor gain to the normal setting. Set the oscillator to 1000 Hz and use a decade attenuator to insert a 19 db loss.
8. Set the LINEARIZER switch on the H and NAB Record Board in slot 4 to OFF.
9. Put the recorder into the RECORD mode. The B OUTPUT lamp must be lit. Readjust the input level to obtain 0 VU on the meter.
10. Measure distortion on the wave analyzer. It should be just under 1% total harmonic distortion.
11. Rewind some of the tape and play it back. Observe the distortion. If it is lower, it means that high-frequency bias current is leaking into the distortion analyzer during recording and all measurements will have to be made through a low-pass filter or during playback only.
12. Return to recording the 1000 Hz signal at 0 VU . Remove 6 db from the calibrated attenuator. The distortion meter should indicate just under 3% total harmonic distortion. Observe the vtvm indication.
13. Disconnect the oscillator from the input to the attenuator and record some tape with this input signal removed, (approximately 30 seconds of tape).
14. Play back the tape so recorded, and read the vtvm. The difference in readings between tape recorded in steps 12 and 13 represents the signal-to-noise ratio measured from the 3% distortion point without the linearization circuit in operation. Place the LINEARIZER switch to ON.

NOTE

Noise figures stated in the system specifications are obtained by the use of bandpass filters. Such filters exclude all noise outside the stated passband.

Miscellaneous Adjustments and Circuit Arrangements

When the METER switch is set to the BIAS position during recording, the VU meter indicates a steady level, determined by the amplitude of bias current in the
record head. When this current is optimized, the meter indication can be adjusted to a convenient reference by means of the BIAS MON. CAL. control on the Bias and Erase Board in slot 1 . This provides a ready check of bias at any time.

When the METER switch is set to the ERASE position during recording, a similar check is provided for the magnitude of the erase current. This may be calibrated to read any convenient level by means of the ERASE MON. CAL. control on the NAB Erase Coupler Board in slot 3.

The recorder is normally set up to supply a 600 -ohm line at the +4 dbm level. The output impedance switch can be set to select either 600 ohms or 150 ohms, and the termination switch can be set to 600,150 , or open position. If it is desired to change the working line level from +4 dbm to some other level, it is necessary to change certain resistors on the Line Amplifier Board in slot 6. A chart of values is shown in the circuit description for this board.

The use of the PILOT connector and the REMOTE METER connector are fully described under circuit descriptions.

The linearizer adjustment should be undertaken in accordance with the following outline. If the user feels the adjustment has been misset it may be disconnected by setting the LINEARIZER switch to OFF until properly aligned.

As delivered, the machine is adjusted for use with Scotch brand low-noise tape types 201, 202, and 203. Under normal conditions no adjustments should be necessary. The switch should always be in the ON position except when distortion measurements are being made. If the machine is to use a different type of tape, the LIN ADJ. control may require trimming. This is best done with aid of a wave analyzer. Adjustment is done as follows:

1. Set the METER switch to CAL position.
2. Make the frequency response and dynamic range adjustments and measurements outlined above for the type of tape used
3. Set LINEARIZER switch to OFF position.
4. Raise record level to give 3% third harmonic distortion.
5. Set LINEARIZER switch to the ON position.
6. Adjust LIN ADJ. control for minimum distortion.
7. Adjust input level to again achieve 3\% third-harmonic distortion.
8. Repeat steps 5, 6, and 7 until no change in record level is necessary.
9. Adjust record level to provide zero VU playback level.
10. Press the A OUTPUT button and set METER switch to SIGNAL. Meter indication should remain at 0 VU . If it is higher or lower, adjust RECORD MON. CAL. control to obtain zero indication.

If it should be necessary to adjust the linearizer without the aid of a wave analyzer, a satisfactory approximation to the ideal adjustment can be made with a vtvm as follows:

1. Set METER switch to the CAL. position and LINEARIZER switch to OFF.
2. Using a standard alignment tape establish a reference level on the vtvm.
3. Using the desired tape type adjust the record level to obtain a signal 6 VU above 0 VU .
4. Set LINEARIZER switch to ON. Output level should rise 0.8 VU if the linearizer is properly adjusted. If not, adjust the LIN ADJ. control to achieve the difference.
5. Set the LINEARIZER switch to OFF. If output level is changed from +6 VU , readjust record level to again obtain +6 VU .
6. Repeat steps 4 and 5 until the 0.8 db difference is attained upon operation of LINEARIZER switch and the indicated operating level is +6 VU with the switch in the OFF position.
7. Reset RECORD MON. CAL. control if necessary as outlined above.

Series 400 recorders equipped to provide overdub recording capability should be set up in accordance with the following procedure:

NOTE

For maximum flexibility, it is desirable to employ a No. 7 board for normal reproduction, and a permanently installed No. $7 / 9$ board in slot 9 to provide overdub facilities. When furnished in this manner the recorder is considered having permanent overdub capability.

1. Place a No. 7/9 board in slot 9. Position the REC. SELECT switch to the O. DUB position.
2. Set the METER switch to CAL. Press the PLAY button. Adjust the GAIN CAL control on the $7 / 9$ card for zero VU on the meter when the 700 Hz signal is playing from the standard alignment tape. Press the STOP button.

DYNATRACK ELECTRONIC ALIGNMENT

The Dynatrack system is designed for operation only at 15 ips. Refer to pages 1 to 4 for a description of the Dynatrack system. In a normal NAB system, one track is assigned to each electronics assembly unit and provides for recording and playback of a separate signal input and output channel. In the Dynatrack system, two tracks are employed per signal channel. The heads will have been properly connected to the electronics assemblies of a factory assembled Dynatrack system but for systems delivered for NAB operation, observe the following conversion procedure. It is assumed that the Dynatrack kit has been installed in accordance with the Dynatrack installation procedure which accompanies the kit.

1. Reconnect the head cables to the electronic assemblies in accordance with the assignment shown in table 3.
2. Observe figure 26. Be sure the Dynatrack boards are installed as shown for electronic assemblies to be employed for this operation. Those not so converted should retain the NAB arrangement, also shown in figure 26 . Figure 26 is reproduced on the inside of the electronics assembly cover door.
3. Set the REC. SELECT switch on all nonconverted NAB electronic assemblies to SAFE and the A-B OUTPUT selector on A. Deactivate the automatic transfer by setting the AUTO A-B switch on each no. 6 board in the NAB assemblies to OFF.
4. Put the NAB standard alignment tape for 15 ips on the transport.
5. Set the REC. SELECT switch to SAFE and the METER switch to CAL. Set the MODE switch on the 8D board to the Hl position. The pilot lamp should go out.

NOTE

Be certain output impedance and termination switches on the rear of electronics module are in proper position for the connected outgoing line.
6. Put the machine in the PLAY mode at 15 ips. When the reference tone of 700 Hz appears, the meter should indicate 0 VU . If it does within $1 / 4 \mathrm{db}$, proceed to step 7. If not, adjust the GAIN CAL. control on the board in slot 7 to obtain this indication.
7. Play the $15,000 \mathrm{~Hz}$ azimuth check tone and adjust the playback head azimuth (figure 27) for peak output as indicated on the VU meter.
8. Play the $10,000 \mathrm{~Hz}$ test tone, and adjust the $\mathrm{HF} E Q \mathrm{FAST}$ control on board 7 to obtain 0 VU on the meter. Play through the tape, and adjust the LF EQ FAST control on board 7 so that all frequencies between 50 and $10,000 \mathrm{~Hz}$ fall within $\pm 1 \mathrm{VU}$ of the 700 Hz reference level. 15,000 Hz shall be no more than +2.5 VU from the 700 Hz reference.
9. After making necessary equalizer adjustments, rewind and replay the standard tape to be certain that the response at all frequencies is within the limits specified in step 8.
10. Rewind the tape.
11. Place the MODE SWITCH on the 8 D board in the LO position. The pilot lamp should light. Set the equalizer switch behind the extractor handle to the lower OFF position. (This switch is not shown in figure 26.)
12. Put the machine in the PLAY mode. When the reference tone of 700 Hz appears, the meter should indicate 0 VU . If it does, within $1 / 4 \mathrm{VU}$, proceed to step 13. If it does not, adjust the GAIN control on board 8D until it is within limits.
13. Play the $10,000 \mathrm{~Hz}$ test tone, and adjust the $\mathrm{HF} E Q$ control on board 8 D to obtain 0 VU on the meter. Play through the tape, and adjust the $L F E Q$ control on board 8 D so that all frequencies between 50 and $10,000 \mathrm{~Hz}$ fall within $\pm 1 \mathrm{VU}$ of the 700 Hz reference level. $15,000 \mathrm{~Hz}$ shall be no more than +2.5 VU from the 700 Hz reference.
14. Set the MODE SWITCH on board 8 D to the AUTO position (mid position). Rewind the alignment tape to permit playing the 5 kHz tone. Adjust the TRIG control on card 8D so that the ne on lamp is on the verge of extinction in the presence of the tone as indicated by slight flickering.
15. Set the equalizer switch behind the extractor handle on card 8 D to the upper ON position. (This switch is not shown in figure 26.)

Dynatrack Record Alignment

This alignment procedure should be carried out, using a length of tape from the supply to be used for subsequent recording. The 3 M Brand Professional Recorder is factory aligned to use 3 M types 201,202 , and 203 tape.

The procedure accomplishes the following. It checks the H track for alignment to NAB standards, adjusts the level and frequency response on the L track, and compares the two tracks for identity of level and frequency response.

Do not upset any of the playback adjustments for either the L or H track which were established above.

H Track NAB Alignment

1. Set REC. SELECT switch to RDY and the METER switch to SIGNAL. Press the A OUTPUT transfer button. Place the LINEARIZER switches on the L record board (3D) and on the H record board (4) to the OFF position. Place the MODE SWITCH on the L preamplifier and switch board (8 D) in the HI position.
2. The RECORD LEVEL control need not be adjusted from its normal operating position if it has been locked in place.
3. Connect an audio oscillator to the SIGNAL IN connector and set the the oscillator frequency to 400 Hz . Adjust the oscillator output level until the VU meter reads 0 VU .
4. Check that the meter continues to indicate 0 VU if the oscillator frequency is varied from 30 to $15,000 \mathrm{~Hz}$. If there is more than $1 / 2 \mathrm{VU}$ deviation in these indications, the reason must be determined before continuing. Set the oscillator to 1000 Hz .
5. Listen with a monitor speaker or earphones to be sure that there is no strong noise or hum component picked up at the input terminals in addition to the oscillator tone.
6. Put the recorder in the RECORD mode. Turn METER switch to CAL. The meter should indicate 0 VU .
7. Adjust BIAS AMP. control on board 1 to give a maximum indication on the VU meter for the 1000 Hz tone being recorded on the H track. The maximum should occur at 0 VU . If the meter indicates other than 0 , adjust the oscillator output level until 0 indication is obtained. Then with the A OUTPUT lamp lit, turn the METER switch to the SIGNAL position, and adjust the RECORD MON. CAL control on board 4 until it again indicates zero. Return the METER switch to the CAL position.
8. Set the oscillator to 7000 Hz . Adjust the azimuth of the record head stack to give a maximum indication on the VU meter. Set the oscillator to $15,000 \mathrm{~Hz}$ and carefully trim the azimuth adjustment for maximum.
9. | Make a frequency run from 15,000 to 30 Hz while observing the VU |
| :--- |
| meter. If it is within $\pm 1 \mathrm{VU}$ from 40 to $15,000 \mathrm{~Hz}$ and $\pm 2 \mathrm{VU}$ at 30 Hz, |
| the performance may be considered satisfactory. |
10. | If the frequency response falls outside these limits, adjust the HF EQ |
| :--- |
| FAST control on board 4 to bring the response within limits. This |
| completes frequency and amplitude alignment of the H track. |

L Track Alignment

Align the L track for frequency response as follows:

1. Set the MODE switch on the 8 D board to the LO position. Turn the METER switch to SIGNAL.
2. Set the oscillator to 250 Hz and reduce the input signal level by approximately 20 db below the 0 VU level by adjusting the oscillator output control or by using a step attenuator.
3. Put the machine in RECORD mode. Transfer the OUTPUT to B.
4. Raise the signal level by the REPRO. LEVEL control until a convenient playback level is indicated. Lock the control in this position. If the reading is still several db below 0 VU, an external VTVM fed from the output of the channel may be useful for making measurements.
5. Set the oscillator to 1000 Hz . Adjust the BIAS ADJ. control on the 3D board to obtain a maximum reading on the meter. Should this result in a higher meter indication, reset the oscillator output to again obtain the convenient reference as in step 4.
6. Make a frequency run from 15,000 to 30 Hz while observing the meter. If the response is within $\pm 1 \mathrm{VU}(\mathrm{db})$ from 40 to $15,000 \mathrm{~Hz}$ and $\pm 2 \mathrm{VU}$ (db) at 30 Hz , the performance may be considered satisfactory.
7. If the frequency response is not within acceptable limits at the high frequency end of the spectrum, adjust the BIAS ADJ. control on the 3D board slightly.

Combined H-L Dynatrack Performance

To adjust the relative amplitudes of the signals in the two tracks comprising a dynatrack channel, it must be borne in mind at this point that the playback levels of both tracks have been properly set using a standard alignment tape and that the recording level in the H or NAB track has been properly established. This leaves only the adjustment of the L track recording level to be determined.

1. Set the MODE SWITCH on the 8D board to HI, the METER switch to the SIGNAL position, and press the OUTPUT transfer B button.
2. Record 700 Hz at a level that will indicate zero VU on playback by adjusting the output amplitude of the oscillator.
3. Set the MODE SWITCH on the 8 D board from HI to LO. The meter indication should not change. If it does, adjust the GAIN control on the 3 D board until meter indicates zero.
4. The LINEARIZER on board 3D will probably not require adjustment. It may be checked and adjusted as outlined for the NAB track. In this case, however, use 500 Hz for the alignment procedure.
5. Unlock the REPRO. LEVEL control knob and return it to approximately the normal operating position. Return the MODE SWITCH to the AUTO position.
6. Check the operation of the trigger circuit as indicated by the neon lamp on board 8 D . While in the record mode, feed various frequencies into the channel. Raise and lower the level slowly by adjusting the oscillator output in order to cause the lamp to turn off and on. At 1000 Hz , this should occur at about 0 VU and at lower levels as the frequency is raised until a level of about -15 VU causes extinction of the lamp at $15,000 \mathrm{~Hz}$. There is no requirement for lamp extinction at any frequency lower than 400 Hz .
7. Listen carefully in a high level monitoring system for clicks and pops when making the tests in paragraph 6 above. They should be almost completely inaudible.
8. Return the LINEARIZER switches on the L record board (3D), and on the H record board (4) to the ON position.

Dynamic Range Measurement, Dynatrack

1. Connect signal generator to a calibrated attenuator box and terminate the output of the box. Feed this output to the input of the recorder channel under test. Connect a distortion analyzer and a vtvm to the output terminals. Connect an ASA weighting network in accordance with figure 28 in series with the input of the vtvm. Use a reel of tape of the type for which the recorder has been aligned under the above paragraphs. Select 15 ips tape speed.
2. Before beginning noise measurements, degauss all heads carefully. Turn off the recorder POWER switch during degaussing. Connect a high gain power amplifier and loudspeaker to the output terminals of the recorder. Short circuit the input terminals. Turn the METER switch to SIGNAL and press the B button. Set the MODE SWITCH on 8 D board in slot 8 to HI. Set both LINEARIZER switches to the OFF position.
3. Turn up the gain so that tape noise is heard loudly.
4. Adjust NOISE BAL control on Bias and Erase Amplifier Board in slot 1 to minimize thumping and popping noises.
5. Set the MODE SWITCH to LO.
6. Adjust the NOISE BAL control on the L Record Amplifier Board in slot 3 to minimize thumping and popping noises. This test will require more gain in the loudspeaker amplifier in order to be heard.
7. Set the MODE switch to HI.

Figure 28. ASA Weighting Network and Response Curve
8. Set the oscillator to 400 Hz , and insert 19 db attenuation in the calibrated attenuator box.
9. Put the recorder in the record mode. The B OUTPUT transfer button must be lit. Readjust the oscillator gain control (not the attenuator) to obtain zero VU indication on the meter.
10. Measure the distortion on the wave analyzer. It should be just under 1%.
11. Rewind some tape and play it back. If there is a significant improvement in the distortion reading it means that high-frequency bias current is leaking into the distortion analyzer during recording. In such instances measurements must be made through a proper low pass filter or only on playback.
12. Change the oscillator frequency to 1000 Hz . Check by recording the signal to be certain that the VU meter still indicates zero level.
13. Remove 6 db of attenuation from the calibrated attenuator. The VU meter will be off scale. Readjust the distortion meter to analyze 1000 Hz . It should show 3% total harmonic distortion.
14. Observe the indication on the vtvm which is fed through the ASA weighting network from the output of the recorder.
15. Disconnect the oscillator by unplugging it from the input to the attenuator, while the recorder is still in the record mode and short circuit the input terminals. Continue to record for about 30 seconds.
16. Rewind the tape far enough so that the 3% level tone will befirst reproduced, followed by tape recorded with no input signal. Set the MODE SWITCH to AUTO.
17. Play back the tape. During the tone the pilot lamp on the 8 D board in slot 8 should be out. Observe the vtvm reading. When the tone runs out, the pilot lamp should light. Again read the vtvm. The difference in readings is the weighted signal-to-noise figure. It should be 80 db . This reading may be attained only after several rotations of the supply reel since a certain amount of printing from the high level (+6 VU) signal to the quiet tape is inevitable in the first few layers.
18. Return both LINEARIZER switches to the ON position.

This recorder can be obtained with a variety of head configurations. Heads are mounted on a plate which provides azimuth adjustment of both record and playback head stacks. Erase heads are fixed in position. The plate carries a connector which mates with another permanently mounted in the transport. The transport connector has leads attached to it which connect to the electronic assemblies. All of these connectors are physically interchangeable. It is imperative that the number and letter coding be observed.

To change a head assembly, first remove the head cover trim, then the transport cover plate, and then the reversing idler (held in place by one screw under the main casting). See figure 23. Next remove the two metal trim plates (one on either side of the capstan and idler). Remove the screws that hold the head mounting plate in place. Insert two screws into the tapped holes at either end of the connector plug. As these are screwed down, they will jack up the plate and gently separate the connectors. An alternate head assembly may be installed by following the reverse procedure. Head stacks of various physical heights may be interchanged. On machines with one-half inch capstan height any heads for up to $1 / 2$ inch tape width may be mounted in place. For machines with one-inch capstan height, any heads for up to 1 inch width may be mounted.

TAPE GUIDES

The function of the tape guides is to cause the tape to be fed into the Isoloop without lateral shifting, so that the recorded pattern remains within the NAB margins, and to cause the tape to wind evenly onto the reels so that each turn lies on top of the other and does not contact either reel flange.

The primary tape path reference is the lower flange of the ingoing guide which guides the tape into the Isoloop.

When head assemblies are changed to accomodate a different tape width, it is necessary to change the tape guides. These may be removed by unscrewing them from the main casting. Replace with guides having the appropriate height. Remember the guides having the narrower opening (a few thousandths of an inch) go on the incoming (supply) side of the capstan. The wide ones go on the takeup side.

This guide surface is set at a fixed distance from the capstan assembly machined surface, on which the heads are mounted. The desired guiding is one that feeds tape into the Isoloop with the edges touching, but not binding on the flanges of the incoming guides. The outgoing tape guides are wider. Their flanges do not guide the tape in the normal running mode.

Tape guides will not normally require adjustment unless the machine is converted for a wider, or narrower tape, New guides, heads, and reel hubs are finished as part of a conversion kit. The replacement guides are installed by their center screws. Proper flange height is established by holding machining and plating tolerances, and no shimming or threaded adjustment is required.

To assure that tape guiding is satisfactory and that no damage or misadjustment has occurred, the following examination can be made.

1. The lower edge of the tape (inner edge of the tape if the transport is mounted vertically) registers lightly on the lower (inner) flange of the incoming guide nearest the capstan. The tape does not move up or down on the reversing idler as the tape direction shifts from forward to rewind.
2. The wear pattern on the heads and guides is straight-sided. (Not keystoned, which would indicate uneven tension across the tape.) There must be no evidence of a $1 / 4$-inchgroove on $1 / 2$-inch guides and heads, or a $1 / 2$-inch groove in 1 -inch heads, etc.

REEL HUBS

The function of the reel tables and holddown hubs is to hold the tape reels in plane of the tape path, so that tape is fed out and spooled without scraping on either reel flange. The hub is held in place by a shaft collar on the reel motor shaft. See figure 29. Position of the collar is secured by two setscrews. After a reel is installed the finned, spring-loaded top of the knob may be turned a few degrees clockwise, which will lift the three small bevelled projections up out of the reel keyway slots to rest on the top of the reel, locking it firmly to the reel table. Reel table height should not require readjustment unless a reel motor is replaced.

A small $1 / 4$-inch center reel table and hub is available to accommodate home-recorder type reels. To install this reel table, the large coinslot center screw in the NAB reel hub is loosened, the top lifted off, and three small Phillips screws removed. The $1 / 4$-inch table and hub are then installed, using the three flat-head screws. The $1 / 4$-inch reels are held in place by turning the top part of the spindle so that the bevelled keys rest on top of the reel, as in the NAB hub.

Figure 29. Reel Hub Adjustment

MAINTENANCE

Maintenance of the 3 M Brand Professional Audio Recorder will normally consist of adjustment and repair as needed. Adjustments are presented in the Alignment and Adjustment section. This section contains special notes concerning maintenance and troubleshooting.

GENERAL PRECAUTIONS

The following paragraphs contain some general precautions which should be observed when performing maintenance on the recorder.

1. Do not strike the reversing idler. It is delicate and located in a vulnerable position at the front of the mechanism. If damaged, flutter will be excessively high.
2. Exercise great care in installing head mounting plates. They can be screwed into place with a head lead pinched between the mounting plate and the transport casting, thus breaking wire insulation or cutting a head lead. Be certain no leads will get in the way before installation.
3. Exercise great care in removing and replacing the mu metal cover over the playback head stack. The slot at the rear of the cover can slice head lead insulation, thereby grounding head leads or actually cutting through them. Be certain that this cover is fully seated so that the lower lip will not scrape on tape as it passes by. Otherwise tape edge may be cut and bad tracking over the heads may result.
4. Do not go from REC. to SAFE when the recorder is operating in the RECORD mode. First stop the transport. This will prevent a thump from being recorded in the tape and magnetization of the record head.
5. Do not remove any of the electronics cards when the power is on. It requires only a few seconds to turn off the power, remove a card, restore power and be ready to operate. Otherwise it is possible to magnetize a head or damage a meter.
6. It is particularly important when moving a $7 / 9$ board from position 9 to position 7 to first turn off the power, then wait about 20 seconds before removing the board and reinstalling it.
7. Be certain to remove the power cord from the transport when moving the recorder. This is to ensure that the capstan motor lockout device will prevent the motor spud from pounding the rubber tire on the flywheel.
8. Be certain no head cables on the power boards touch the rubber tire on the flywheel at any time, either when installed or in shipment.
9. The individual electronics module power supplies are mounted behind the meter. They are accessible by pulling the meter forward. Pull the meter by the fingers applying force to the meter case below the transparent window, not above, since this may result in a cracked case.
10. Never carry an electronics assembly face downward as the power supply module may fall out, breaking the meter.
11. Do not allow reels or flanges to scrape on the painted surface of the trim plate as this will mark it badly. Scraping can be caused only by bent reels or flanges which, if they cannot be repaired should be discarded.

TROUBLESHOOTING

Failure of the recorder to operate properly may be caused by a malfunction in the recorder, or by external causes. Before troubleshooting the recorder, verify that the power and signal connections are correct, and that all of the operational controls are properly set.

Some of the troubles most likely to be encountered are presented in table 9. However, the best troubleshooting tool is a familiarity with the equipment and a thorough understanding of its theory of operation.

Table 9. Troubleshooting

SYMPTOM	CAUSE	CORRECTION
TRANSPORT		
1. Transport stops when leader tape passes photo cell V60, particularly after machine warms up.	Photo resistor V60 is too sensitive.	Temporary: mask cell or lamp with one or more thicknesses of white splicing tape. Permanent: change value of R7l to a lower value best determined by test. Be careful to avoid grounding any wiring on the circuit board or cell leads.

Table 9. Troubleshooting (Cont'd)

SYMPTOM	CAUSE	CORRECTION
2. Transport will not stop when tape runs out. STOP button lights when tape is not threaded.	Lamp DS8 Low in light output. Weak photo resistor V60.	Replace the lamp. Lamps blacken after long use. If type 313 is found in socket, replace with 1820 , longer life bulb. Replace V60 or try raising value of R7l. Try 40K. Be careful to avoid grounding any wiring on circuit board or photo cell leads.
3. Capstan motor will not start when tape is threaded and the STOP light does not go out.	V60 damaged by accidental grounding.	Replace V60.
4. Capstan motor will not start when tape is threaded, but STOP light goes out.	Plug Pll separated from Jll. Speed change switch off normal.	Connect the two parts, Pll to Jll. Operate switch to desired speed.
5. Transport coasts to stop from play mode when stop button is pressed.	Relay K7 cannot be operated during stop sequence because the reed switch is not closed.	Adjust the flag stops and/ or clearance of magnets from the switch to restore operation.
6. Transport coasts to stop from the FORWARD mode when the STOP button is pressed. Possible tape breakage.	Same as 5, above.	Same as 5, above.
7. Transport coasts to stop from the REWIND mode when stop button is pressed. Possible tape breakage.	Same as 5, above except K6.	Same as 5, above.

Table 9. Troubleshooting (Cont'd)

	SYMPTOM	CAUSE	CORRECTION
	Tape continues in REWIND when the stop button is pressed. Restores to normal after tape runs out or POWER switchisturned off and on.	Tape motion direction sensor flag binding against forward direction stop post.	Check height of flag to be sure it clears screw head and locking nut of the post.
	Tape continues in REWIND when the stop button is pressed. Does not clear after tape runs out or POWER switch is turned off and on.	K7 hung up. Contacts 5 and 9 sticking.	Replace K7 with another relay. Interchange with K2 after burnishing contacts 5 and 9 if no other relay is available.
	Tape continues in FORWARD when STOP button is pressed. Restores to normal after tape runs out or POWER switch is turned off and on.	Same as 8, above. Damaged CR33 or CR34 giving half wave power. Low Line Voltage.	Same as 8, above. Check diodes and replace defective unit. Arrange for higher input voltage. Use auto transformer or Variac if necessary.
	Transport throws loop when starting in Play mode, generally worse near end of reel rather than beginning.	Ingoing Solenoid, capstan idler, dash pot needs adjusting.	Adjust so that dashpot piston is completely at end of cylinder when at rest position. Dashpot load should be picked up just as puck builds up sufficient tape pressure on capstan to cause tape to move forward. Then dashpot will allow pressure to increase as tape is accelerated to running speed. Solenoid must seat instantly when power is applied, coupling spring allows gradual buildup of puck pressure adjusted by Phillips screw in solenoid arm linkage. Dashpot adjusted by bending two tangs on fork linkage.

Table 9. Troubleshooting (Cont'd)

SYMPTOM	CAUSE	CORRECTION
12. Sluggish Solenoid operation; L1, L2.	Misalignment or in need of lubrication.	Try lubricating first with graphite or silicone. Loosening to improve alignment may change absolute position of linkages when plunger is seated necessitating their further adjustment.
13. Tape lifter hangs up. 14. Tape lifter difficult to override manually.	Misalignment or in need of lubrication. Plunger approaches full seated position too closely.	Plunger must not drag too forcefully against core of solenoid. Body should be so positioned to avoid such side drag, and to provide best compromise of depth of travel to satisfy easy override yet adequate lifting power.
15. Tape lifter fails to lift tape from heads.	Plunger operating too far from seated position.	Loosen two mounting screws, lubricate plunger and shift body (holes are oversize) to achieve above requirements.
16. Flutter and Wow excessive.	Numerous sources possible. Most likely are: a) Head cables dragging on flywheel tire, b) Insufficient capstan idler pressure either ingoing or outgoing, c) Defective reversing idler, d) Dirty spud on motor shaft, e) Dirty flywheel tire or f) Speed adjustment screw too loose.	Remedies are obvious; also see transport alignment for more details.

Table 9. Troubleshooting (Cont'd)

SYMPTOM	CAUSE	CORRECTION
17. Transport appears completely dead. 18. All lamps excessively bright and short lived.	Blown fuse Fl. Intermittent operation of power switch S6. C66 charged to greater than 30 volts but no 27 volt dc at collector of Q60 or at test point means Q60 is defective. Regulator Q60 and associate circuit, Q1, R14, R15, and CR50 not functioning.	Replace with 5 amps slow blow. Press a few times to observe if lights come on. Replace Q60 after checking load resistance from collector to ground for short circuit defect. Clear defect before again applying power. Replace Q60. Catcher diode CR5l will also require replacement if condition persisted for more than a few seconds. Check resistance of 27 volt load to be certain Q60 will not be overloaded. Transport may be operated without CR51 until replaced.
ELECTRONICS		
1. Meter lights but no signal. Record light will not light. Regulator transistor in power supply abnormally warm. 2. Playback preamp in slot 7 or 9 distorted or n φ output.	Short circuit on plus 28 volt bus. Bias of Q2 improper.	Remove one plug-in board at a time and reinsert to determine if fault is in cards or module wiring. C4 on power supply unit possible shorted. System may operate without C4 until replaced. Collector of Q2 should be per schematic. See figure 46. Defective Q1 or Q2 causes drift.

Table 9. Troubleshooting (Cont'd)

SYMPTOM	CAUSE	CORRECTION
3. A-B transfer causes bad clicks in output (moves meter pointer).	Leaky capacitor Cl5 in output of record monitor amplifier on board in slot 4 or at output of preamp in slot 7 or 9. Also can be leaky input capacitor to line amplifier in slot 6 (C9).	If REPRO. LEVEL pot is noisy when turned, fault is in output of board in slot 7 or input of board 6. Extract board 7. If still noisy card 6 is at fault. If pot is not noisy when turned, trouble is probably at output of board 4 (Cl5). Replace faulty tantalum capacitor.
4. Loss of signal in record, reproduce or monitor circuits.	Broken leads on black tantalum capacitor, likely on any board.	These capacitors are somewhat vulnerable since they project higher off the board than other components and their leads are not flexible. Replace with identical item.
5. Loss of signal in record board.	Defective Field effect transistor Q2. Easily damaged by static charge from soldering iron or tool held in hand.	Replace Q2. Be very careful to avoid static charges. Ground soldering iron tip by flexible lead to ground bus of record board. Always use insulated screwdriver or plastic blade to adjust eq. cap Cl8 or Cl9.
6. Noise or intermittent operation in any area of electronics module.	Dirty contacts at base of card at plug.	Remove and reinsert card. Use ink eraser to clean contact surfaces of cards. Sockets are gold plated. They should be ok.
7. High distortion	Insufficient bias.	Adjust to peak per instructions in this manual.

Table 9. Troubleshooting (Cont'd)

SYMPTOM	CAUSE	CORRECTION
7. (Cont'd)	Magnetized head, either record or reproduce.	Degauss heads.
	Noise balance control misadjusted.	Adjust for minimum noise after degaussing all heads.
	Faulty record or playback amplifier biasing.	Check voltages per schematic. If drastically different at any point, find cause and remedy.
8. Poor noise figure.	Noisy Q1 or Q2 in preamplifier.	Substitute another preamplifier to compare noise and replace transistors.
	Head cables badly routed, near hum fields.	Reroute for minimum noise. Keep away from power cord. This can be very important.
	Head cables rubbing on flywheel.	Noise arises from microphonics of cables under vibration. Must be rerouted to clear flywheel.
	Defective playback head requiring excessive gain.	Replace head. Try breakin tape if head appears to be smeared over by magnetic material.
	Lack of good system ground can produce hum or buzzing. Third wire in power cord not always effective as good ground.	Connect frame of recorder to good effective ground.

Table 9. Troubleshooting (Concluded)

	SYMPTOM	CAUSE	CORRECTION
	Wrong output level.	Improper choice of line impedance or termination.	Set switches Sl05 and Sl06 to proper arrangement for line being fed by recorder.
		VU calibrated to wrong line level for specific application.	Check value of resistors R1, R2, R3, on board in slot 6. See table 10 .
	Meter lights brighter than normal.	Meter light socket touching ground.	Move socket slightly, and cover with insulating tape.
		Defective lamp.	Replace lamp.
	Meter lights, A-B lights not lit. R13 on power supply hot.	Ground on brace to terminal 18.	Remove clamping screw and insert mica insulating washer. Replace screw.

FIELD SER VICE

Regular scheduled maintenance service is available from the Mincom Division service office on a contract basis. If immediate service is required, it may be obtained on an emergency basis. Every effort is made to furnish the needed repair as soon as possible. For a complete description of 3 M s maintenance service plans and their costs, contact the Mincom Division service office.

FACTORY REPAIR SERVICE

If desired, the recorder or major assemblies, may be returned to the factory (transportation prepaid) for repair. When recorder or assembly is returned:

1. Indicate the symptom of defect. State as completely as possible, both on an instrument tag and on the order form, the nature of the problem encountered. Too much information is far better than too little. If the trouble is intermittent, please be specific in describing the instrument's performance history.
2. Give special instructions. If any changes in the instrument or assembly have been made, and it is desired to retain the modified form, please indicate this specifically.
3. To facilitate expeditious repair, your Contract or Purchase Order authorizing the work should be directed to Mincom Division - 3M Company - 300 South Lewis Road - Camarillo, California 93010 Attn: Contracts Department.
4. Pack securely and label. Proper packaging saves money. The small amount of extra care and time it takes to cushion a part or instrument properly may prevent costly damage while in transit. Make certain that the address is both legible and complete; failure to do so often results in needless delay. Address all shipments and correspondence to:

> Mincom Division
> 3 M Company
> 300 South Lewis Road
> Camarillo, California 93010

Attn: Receiving Inspection
5. Show return address on repair correspondence. Please clearly indicate the exact address the equipment should be returned to after repair is completed. Terms are net 30 days - f.o.b., Camarillo, California.

PRINCIPLES OF OPERATION

INTRODUCTION

The 3 M Brand Professional Audio Tape Recorder is an advanced audio recording instrument that incorporates the best techniques available at the present state of the art. A tape recorder consists basically of a tape transport (deck) and record and reproduce (play) electronics. The signal to be recorded is amplified and applied to a magnetic record head, which impresses a magnetic pattern in the oxide coating of the magnetic recording tape in accordance with the variation of the input signal. During reproduction (play) the variations in magnetic flux that were impressed on the tape during recording, are sensed by a reproduce head, amplified, and applied to the recorder output.

In order to record and reproduce with a minimum of distortion, a highfrequency bias is mixed with the input signal at the record head so that recording takes place in the portion of the magnetization curve that is essentially linear. The signal recovered by the reproduce head must also be equalized by circuits that compensate for the response characteristics of the reproduce head at low and high frequencies.

The high-frequency signal that is used for bias is also used to erase signals that may have previously been recorded on the tape. The erase signal is applied to a separate erase head, which is similar to the record head but applies the highfrequency signal at a much higher level. The signal applied to the erase head drives the magnetic material of the tape to complete magnetic saturation to obliterate any signal, or noise that may have been previously recorded on the tape.

The patented Isoloop tape drive maintains differential tension within the loop of tape passing over the heads and ensures that the tape remains in close contact with the heads during tape travel. This ensures that the magnetic flux impressed by the record head penetrates the oxide material uniformly and eliminates variations in amplitude that can result if the close head-to-tape contact is not maintained. Similar amplitude variations can take place if the tape is not maintained in close contact with the play head.

Tape Drive Components (See Figure 30)

Components of the tape drive system consist of a capstan drive motor, two reel drive motors, and control relays that determine the mode of operation. When in play and record modes, the tape is moved through the Isoloop by the capstan. The reel drive motors maintain constant tension on the tape as it enters and leaves the loop. When in fast-forward or rewind, tension is released within the Isoloop and the reel drive motors move the tape through the loop independently of the

Figure 30. Tape Recorder, Block Diagram
capstan. Before entering and after leaving the Isoloop, the tape passes over stationary guides to ensure that is properly aligned with the magnetic heads.

When the transport is in the play and record modes, solenoids press the capstan idlers against the tape, clamping it to the capstan to prevent it from slipping. The tape is moved past the income idler and capstan, past the erase and record heads, and around the reversing idler. From the reversing idler, it passes the play head, and the outgoing idler and capstan. During fast-forward and rewind, solenoid-actuated tape lifters hold the tape away from the tape so that signals on the tape will not be played back, which would cause an annoying squeal. The tape lifters are inactive in play, record, and stop modes.

The play head is enclosed in a magnetic shield to avoid pickup of noise from surrounding equipment and bias-frequency energy radiated by the erase and record heads. A solenoid-actuated cover is positioned over the tape as it passes the play head and serves to complete the shielding of the head. During fast-forward, rewind, and stop, the hinged cover is moved away from the head to allow the tape to be lifted by the tape lifters and allow easy threading of the tape. The cover is closed during play and record.

TAPE TRANSPORT CIRCUIT DESCRIPTIONS

The following circuit descriptions relate to figure 31 which must be used to follow the discussions. In the schematic, connector terminals are shown as small rectangles with the connector and terminal numbers inserted.

Power Circuits

A standard, three-wire power cable is provided, which must be connected at J1. The third, or ground, lead must be connected to a good earth ground; otherwise the recorder will not meet dynamic range specifications in regards to hum, harmonic buzz, or radio-frequency fields. The power is normally 60 cycles, 105 to 125 volts, but 50 cycle models for the same voltage range are available and entail only a change of capstan motor characteristics. The schematic otherwise remains unchanged. For 220 volt operation an external line transformer must be used.

The POWER switch, S6, when operated, closes both sides of the input line activating a number of circuits. These are as follows:

1. Bridge rectifier CR46 through CR49 charges capacitor C65 through R60 approximately 165 volts in the absence of a load. This voltage is applied through J7-2 and J9-1 to the fields of the takeup and rewind motors. Field returns are through J7-1, and J9-2 through J6-4, and Kl contacts 6 and 10. Relay Kl operates as soon as power is turned on unless the transport has been previously threaded with tape.
2. Power is supplied from terminals J4-11 and J4-12 to the various electronics modules through an interconnecting cable.
3. Power is supplied to step-down transformer T60 from terminals TB3-2 and TB3-1. The low-voltage secondary feeds terminals J5-2 and J5-3. A full-wave bridge on the board, consisting of CR37 and through CR40 supplies charging current through terminals J5-5 and J5-1 to C66 and regulator transistor Q60. Zener Diode CR50 is supplied from R14 and establishes a voltage reference of 27 volts, applied through R15 to the base of amplifier transistor Q1. The collector of Ql is directly coupled to the base of Q60 and the output collector potential of Q60 establishes the emitter voltage of Q1. The two transistors thus act to regulate the bus potential (approximately 26.5 volts). When power is applied the bus potential lights POWER indicator DS6, and the tape sensing lamp DS8. If fail-safe brakes are furnished, L6 operates to release them. As the solenoid approaches the end of its stroke, Sl5 is opened to reduce current in L6 by insertion of R73. Without tape on the machine, light from DS8 falls on photo sensor V60. The base of Q61 is the reby held near ground potential. The collector at Q61 is then at a relatively high potential causing Q62 to increase conduction. Current flows through Q62 to relay Kl through J6-7 to operate relay Kl. Through Kl contacts 11 and 7, voltage is applied through J6-9 to J3-N, to light an indicator lamp on the Remote Control; if used, to show that the machine is on but inoperative due to the absence of threaded tape. The playback head shield cover door is caused to open through CR-25, J6-14, and TB1-1 with a return path through TBl-2. Also at this time, Kl contacts 12 and 4 , and 11 and 3 are open and the 27 volt bus can perform no further function. Because of this, the machine may not be put into any mode of operation until tape is threaded on the machine.
4. A path is prepared through J5-F to J5-D and Pll-2J to furnish power to the capstan motor, but this is kept open by Kl contacts 1 and 9 when tape is not threaded. The capstan motor is energized through J8-7 and S8 to either J3-8 or J8-4. The quadrature winding of the motor is supplied through C64 and R63 and through S8 to either J8-5 or J8-6. Motor return leads, depending on the speed selected by 88 , are through J8-1 and J8-2, or J8-1 and J8-3 back to switch S6 through Pll-J1. When power is supplied to the capstan motor it is also supplied to bridge rectifier CR42 through CR 45 . The dc output of the bridge is applied through J5-J, R68, and TB2-3 to a solenoid, which pulls the motor pulley physically into contact with the capstan flywheel tire. Return path of the solenoid is through TB2-2 and J5-7. Filter capacitor C68 prevents induction of hum from the solenoid into the playback heads.
5. Power is applied to J3-c and J3-d for application at the remote control position, if required.
6. The fan is normally connected across TBl-4 and TBl-6 where it is operated only when the capstan motor is running. By removing the fan lead on TBl-4 and connecting it to TBl-5, the fan will run whenever the power switch is on.

Threaded Tape Condition

When a reel of tape is placed on the supply hub, the free end is passed through the incoming side of the Is oloop, past the capstan and record head, and around the reversing idler, then between the outgoing side of the capstan and its idler. When the tape is dropped into position at this point, light is cut off from V60 causing relay $K 1$ to release. $C R-1$ is a surge protective diode.

When Kl contacts 11 and 7 open, the head shield cover is closed because the door solenoid is released and the remote TAPE RUNOUT lamp goes out.

Closure of Kl contacts 11 and 3, and 12 and 4 applies bus potential through K7 contacts 11 and 3 , K6 contacts 12 and 4, K8 contacts 11 and 3, and K5 contacts 12 and 4 through J5-14 to light STOP lamp DS3; and a path through CR13 and R5 charges C3, and operates K4. Several other paths are likewise made ready. Opening of Kl contacts 10 and 6 inserts $R 9$ in the return path of the reel motor fields and the voltage developed across this resistor is applied through K5 contacts 1 and 9, K6 contacts 1 and 9, K7 contacts 1 and 9 through J6-A to the armature of the rewind motor. A similar path applies the same voltage to the takeup motor through K5 contacts 2 and $10, \mathrm{~K} 6$ contacts 2 and 10 , K7 contacts 2 and 10, and J6-2. The torque so generated is very small; sufficient to remove slack from threaded tape but not enough to cause motion of the tape from a large-diameter reel to a smaller one. When the end of the tape is threaded into the takeup reel, the transport is ready to be put into motion from its standby condition.

From Standstill to Play

Bus potential exists on switch S5 through J6-D, J2-9, and J2-10. Closure of the PLAY pushbutton applies this through J6-18 and CR4 to operate relay K3 momentarily. Through K7 contacts 11 and $3, \mathrm{~K} 6$ contacts 12 and 4 , K 8 contacts 11 and 3, and K3 contacts 8 and 12, K5 is caused to operate. Release of the PLAY pushbutton releases K 3 but K 5 remains locked up through K 5 contacts 8 and 12, K8 contacts 3 and ll, etc. PLAY lamp DS5 remains lit through J6-17 since it is in parallel with the coil of K5. This same supply immediately operates the ingoing capstan idler solenoid through TB2-1, clamping the tape gently, under control of a dashpot, to the capstan. The break at K 5 contacts 12 and 4 removes bus voltage from C3 and the coil of K4 so that after approximately 0.5 second, K4 releases. Closure of K4 contacts 11 and 3 applies bus power to J6-12 and TB2-3 and operates the outgoing capstan idler solenoid. This occurs after the tape has accelerated to
running speed under control of the ingoing solenoid. In one-inch capstan machines, C3 is rated at $500 \mu \mathrm{~F}$ to delay the operation of the outgoing solenoid an additional 0.4 sec ond.

When K 5 operates, the transfer of K 5 contacts 2 and 10 , to 6 and 10 , applies full de power through K 4 contacts 6 and 10 , K 5 contacts 6 and 10 , K 6 contacts 2 and 10 , and K7 contacts 2 and 10 to the takeup motor armature and a reasonably high hold-back torque to the supply motor through K4 contacts 6 and 10 , R8, K 5 contacts 5 and 9, K6 contacts 1 and 9, and K7 contacts 1 and 9. After the tape is up to speed and K4 released, the break at K4 contacts 6 and 10 inserts resistors R6l and R62 in the armature paths to establish proper winding and holdback torques since acceleration conditions are replaced by constant-velocity operation.

From Play to Stop

Directly beneath the takeup reel hub on the takeup motor shaft is mounted a ball bearing. The outer race of this bearing is not rigidly mounted but is centered in a light-weight vane. The vane would rotate with the takeup motor shaft but is prevented from doing so by two posts. The vane rests against one post when the motor turns in one direction and shifts through an angle of about 15 degrees to rest against the other post when the motor turns in the other direction. The vane carries a small magnet, which causes operation of reed switch Sl3 when the motor runs in the forward direction. Switch Sl3 is released and Sl4 is caused to close when the motor turns in the reverse direction.

With the machine in the play mode, if the STOP pushbutton is pressed, the following takes place: Bus voltage is applied from K3 contacts 10 and 2 through J6-11, J2-12, J2-11, and the closed contacts of S3, through J6-8 to operate relay K8. Bus power from J6-D is applied through S13, which is closed in the forward direction, through J5-18, K8 contacts 6 and 10 to oper ate K7. Relay K7 closes a holding path for relay K 8 through K 7 contacts 12 and 8 , K 8 contacts 8 and 12 , to K8 terminal 14, so that K5 and K6 both remain operated after pressure is removed from S3. The REWIND lamp is lit through K7 contacts 11 and 7. The break at K8 contacts 3 and 11 opens the holding circuit for K 5 and it releases, extinguishing the PLAY lamp and dropping out the capstan idler solenoids so as to unclamp the tape from the capstan. Operation of K 7 provides full torque power through K7 contacts 5 and 9 and through J6-A to the rewind motor, while the break at K7 contacts 2 and 10 removes all takeup motor torque, bringing the tape to standstill and attempting to start it in the reverse direction. Motion of the tape in the opposite direction, however, causes the vane in the sense switch assembly to leave its former position against the forward stop and swing toward the reverse stop. When the magnet moves away from Sl3, this switch opens, dropping out K7. This applies a light holding torque to the tape. When K7 releases, it releases K 8 by opening K7 contacts 7 and 11. Relay K 4 is held closed through K 7 contacts 11 and 3 , K6 contacts 12 and $4, \mathrm{~K} 8$ contacts 11 and $3, \mathrm{~K} 5$ contacts 12 and $4, \mathrm{CR} 13$ and R5. It was previously operated through K7 contacts 12 and 8, CR14 and R5. With the exception of K4, all relays are de-energized and STOP lamp DS3 is lit.

From Stop to Rewind

With the machine in standby, pressing REWIND pushbutton S 2 causes bus voltage to be applied through K3 contacts 10 and 2, J6-11, J2-12, J2-11, S3, S2, $\mathrm{J} 5-\mathrm{R}$, and K8 contacts 2 and 10 operate K7. The relay applies rewind torque through K7 contacts 5 and 9 as outlined above, and K7 locks up to the power bus through K7 contacts 11 and 7, and K8 contacts 2 and 10. The tape accelerates in the rewind direction with full power on the armature of the rewind motor. Since this is a dc shunt motor, it would reach a certain terminal velocity at which time tape would be loosely wound except for the following feature. As the tape comes up to speed in rewind, the armature of the takeup motor is open circuited because of the break at K7 contacts 2 and 10. It operates as a dc generator without load until a definite terminal voltage is reached, the voltage rising as the speed increases. Zener diode CR53 will not pass current until the potential across it reaches 75 volts. Therefore, when the generated voltage reaches this level, current flows through J9-4, J6-S, CR32, CR53, J6-2 and J9-3 to act as a load and effective brake on the takeup motor, limiting the maximum speed at which it will supply tape and thereby providing a controlled tension in the reel being filled. Closure of K7 contacts 12 and 8 provides a path through CR24, J6-14, and TB1 to open the head shield door and through J6-15 to operate the tape lifters.

From Rewind to Stop (Tape Moving in the Rewind Direction)

Pressing STOP switch S3 operates relay K8 through K3 contacts 10 and 2, J6-11, J2-12, J2-11, S3, and J6-8. Since tape is moving in the rewind direction, the sense switch vane has caused Sl3 to open and Sl4 to close. Therefore, K6 is caused to operate through J6-D, S14, and K8 contacts 5 and 9. Relay K8 is locked up through K6 contacts 11 and 7, K8 contacts 8 and 12, and K6 is held up by Sl4. Relay K7, however, is released by the break at K8 contacts 10 and 2 and the fact that S13 is open. The power that was supplied to the rewind motor through K7 contacts 5 and 9 is removed by its release and transferred through operation of K6 through K6 contacts 6 and 10 to the takeup motor, which now operates to bring the tape to standstill and attempts to reverse it to the forward direction.

As soon as the sense switch vane moves away from Sl4 toward Sl3, Sl4 opens releasing K 6 and placing all circuits in the standby condition. During the stopping interval, the REWIND lamp goes out and the FORWARD lamp is lit from release of K7 and operation of K6. In standby, the tape lifter solenoid is released and K-8 is released by the break at $\mathrm{K}-6$ contact 7 and 11 . The head cover door remains operated through S-12, J6-M and CR-26 unless manually overriden to break S-12. Relay K4 remains energized throughout the above action, either through K7 contacts 12 and 8, CR14; or through K6 contacts 11 and 7, CR14; or through K7 contacts 11 and $3, K 6$ contacts 12 and $4, K 8$ contacts 11 and 3 and $K 5$ contacts 12 and 4 and CR13.

From Rewind to Stop (Tape Moving in Forward Direction)

It is possible while shuttling the tape at high speed to have the tape moving in the forward direction but to have the controls in the rewind mode. If the STOP pushbutton is pressed at this time, K8 is energized in the manner described above; however, K7 is not released in favor of K6 because the sense switch vane is in position to cause S13 to be closed and S14 open. Thus K7 remains energized and the tape comes to standstill and attempts to reverse at which time the sense switch opens S13, releasing K7 and putting the machine in standby. At this time the tape lifters are released and K 8 is released by the break at K 7 contacts 8 and 12 . The door solenoid remains energized through Sl2 unless overridden manually to break S12.

From Stop to Forward

With the machine in standby, pressing the FORWARD pushbutton causes bus voltage to be applied through K3 contacts 10 and 2, J6-11, J2-12, S3, S2, S4, J5-S, CR17 and K8 contacts 1 and 9 to operate K6. Relay K6 applies full torque to the takeup motor through K6 contacts 6 and 10, K7 contacts 2 and 10, J6-2, and J9-3, causing tape to accelerate in the forward direction. Relay K6 locks up to the power bus through K8 contacts 9 and 1, K6 contacts 8 and 12, and K7 contacts 3 and 11 . Motor speed is limited by the action of Zener diode CR52 as described before.

Closure of K6 contacts to 11 and 7 provides a path through CR24 to open the head shield door and through J6-15 to operate the tape lifters.

From Forward to Stop (Tape Moving in Forward Direction)

Pressing STOP switch S3 operates relay K8 through K3 contacts 10 and 2, J6-11, J2-12, J2-11, S3 and J6-8. Since tape is moving in the forward direction, the sense switch has caused Sl3 to be closed and Sl4 to be open. Thus, K7 is operated through J6-D, S13, J5-18, and K8 contacts 6 and 10. Relay K8 is locked up through K7 contacts 12 and 8, and K8 contacts 8 and 12. Relay K6, however, is released by the break at K8 contacts 9 and 1 . The power that was supplied to the takeup motor through K6 contacts 6 and 10 is removed by its release and transferred through closure of K7 contacts 5 and 9 to the rewind motor, which now operates to bring the tape to standstill and attempts to reverse it to the rewind direction. As soon as the sense switch moves by reversal of tape motion, it releases Sl3, releasing K 7 and placing all circuits in standby. During the stopping interval, the FORWARD lamp goes out and the REWIND lamp lights because of the release of K6 and operation of K7. In standby, the tape lifter solenoid is released. K8 is released by K7 contact 8 and 12 . The door solenoid remains energized through S12 unless manually overridden to'break Sl2.

From Forward to Stop (Tape Moving in Rewind Direction)

It is possible, while shuttling tape at high speed, to have the tape moving in the rewind direction but to have the controls in the forward mode. If the STOP button is pressed at this time, K8 pulls in in the manner describedabove. However, K 6 is not released in favor of K7 because S 14 is held closed by the sense switch vane while S13 is open. Thus, K6 remains operated and the tape comes to standstill and attempts to reverse, at which time the sense switch opens Sl4, releasing K4 and putting the mechanism in standby. At this time the lifter solenoid is released, and K 8 is released by the break at K 6 contact 7 and 11 . The Door solenoid remains operated through Sl2 unless manually overridden to break S12.

From Forward to Rewind

Considering the tape to be in the forward mode regardless of its actual direction, relay K6 is energized. Pressing the REWIND pushbutton closes a circuit to operate K7 through K3 contacts 10 and 2, J6-11, .S3, S2, J5-R, K8 contacts 2 and 10 to K7-14 through K7-13, CR19 and R6 to ground. Relay K7 operates, opening the holding path for K6 at K7 contacts 3 and 11, which releases, further breaking its holding circuit at K6 contacts 8 and 12. Torque power to the reel motors is therefore reversed. Relay K7 locks up through K8 contacts 10 and 2, and K7 contacts 7 and 11.

From Rewind to Forward

Considering the tape to be in the rewind mode regardless of its actual direction, relay $K 7$ is energized. Pressing the FORWARD pushbutton closes a circuit to operate K6 through K3 contacts 10 and 2, J6-11, J2-12, J2-11, S3, S2, S4, J5-S, CR17, and K8 contacts 1 and 9 to K6-14. Because J5-S applies bus potential to CR20 as well as to CR17, the coil of K7 is effectively shorted, since the total voltage appears across R6. This releases K7, K6 remains operated over the path $K 7$ contacts 11 and $3, \mathrm{~K} 6$ contacts 12 and 8 , and K8 contacts 1 and 9. Torque to the reel motors is therefore reversed.

From Rewind to Play

In the rewind mode, regardless of actual direction of tape motion, relay K 7 and K4 is energized. Pressing PLAY pushbutton $S 5$ causes bus power to flow through J6-D, J2-9, J2-10, S5, J6-18, and CR4 to operate K3. A holding path is established through K7 contacts 12 and 8, K 3 contacts 11 and 7, R1, CR8 and CR7 so that K 3 will not release when $S 5$ is released. Relay $K 3$ contacts 10 and 2 open the paths to $S 3$, S2 and S4 pushbuttons to render them inactive at this time. The potential from K7 contacts 12 and 8 through K3 contacts 11 and 7, and through Rl also feeds through CR9 to terminal 14 of K8 causing it to operate. Because this action opens the holding path of K 7 through K8 contacts 10 and 2, and K7 contacts 7 and 11, an unstable condition could arise, but this is prevented by the charge in Cl2, which continues to hold K8 until the transfer of K 7 is completed if need be. Whether K7
continues to hold or to transfer to K6 is determined by the direction the tape is moving as outlined above. In any event, operation of $K 8$ functions to bring the tape to standby condition. When K6 or K7 is released by the sense switch as the tape reaches standstill and attempts to reverse, the break at K6 contacts 7 and 11 or K7 contacts 8 and 12 releases K8. Normally, the machine would now remain in standby, but at this time K3 is still operated even though its supply path through K3 contacts 7 and 11 is open. This is because it is held by the charge in Cl for sufficient time to perform an additional function. When K8 releases, bus power is supplied through K7 contacts 11 and $3, \mathrm{~K} 6$ contacts 12 and $4, \mathrm{~K} 8$ contacts 11 and 3, and K3 contacts 8 and 12 to operate K5. The functions from here on are as described under "From Standstill to Play."

From Forward to Play

In the fast-forward mode, regardless of actual direction of tape motion, relay K6 and K4 is energized. Pressing PLAY pushbutton S5 causes bus power to flow through J6-D, J2-9, J2-10, S5, J6-18, and CR4 to operate K3. A holding path is established for K3 through K6 contacts 11 and 7, K3 contacts 11 and 7, R1, CR8, and CR7 so that K3 will not release when S5 is released. Relay K3 opens the paths to S3, S2, and S4 pushbuttons to render them inactive at this time. The potential from K7 contacts 12 and 8 through K3 contacts 11 and 7 and Rl also feeds through CR9 to terminal 14 of K8 causing it to operate. Because this action opens the holding path for K6 through K8 contacts 9 and 1 and K6 contacts 8 and 12, an unstable condition could arise but is prevented by the charge in Cl2, which continues to hold K8 until the transfer of K6 is completed, if need be. Whether K6 continues to hold or to transfer to K7 is determined by the direction of tape movement. In any event, operation of K8 functions to bring the machine to a standby condition. When K6 or K7 is released by the sense switch as the tape reaches standstill and attempts to reverse direction, the break at K6 contacts 7 and 11, or K7 contacts 8 and 12, releases K8. Normally, the machine would now remain in standby but at this time K3 is still energized even though its supply path through K 3 contacts 7 and 11 is open. This is because it is held by the charge in Cl for sufficient time to perform an additional function. When K8 releases, bus power is supplied through K7 contacts 11 and 3, K6 contacts 12 and 4, K8 contacts 11 and 3, and K3 contacts 8 and 12 to energize K5.

Tape Runout

When the tape runs out from any mode of operation, the light from lamp DS8 falls upon photo diode V60, causing Kl to energize. This action opens the bus supply to all other relays. All power is therefore removed from the armatures of the takeup and rewind motors. A short circuit is applied to the armature of each motor. One such circuit is through J9-4, J6-S, K1 contacts 10 and 6, J6-4, J2-1, J2-2, J5-P, K5 contacts 2 and 10, K6 contacts 2 and $10, \mathrm{~K} 7$ contacts 2 and 10 , J6-2 and J9-3. The other circuit is through J7-4, J6-S, K1 contacts 10 and 6, J6-4, J2-1, J2-3, J5-V, K5 contacts 1 and 9, K6 contacts 1 and 9, K7 contacts 1 and 9, J6-A, and J7-3. Since the fields are fully excited, this system acts to brake the motors to a standstill since they operate as dc generators operating into a short circuit.

Abstract

Record Mode Operation The record mode can be selected only when the PLAY lamp is lit, indicating that the machine is running at normal speed. It is then necessary to press both the RECORD and RUN pushbuttons simultaneously. Bus power is applied through J6-D, J2-9, J2-10, S5, S1, J5-13, and K3 contacts 7 and 11 to operate K2, which then locks up to the holding path for K 5 . This path is K 5 contacts 8 and 12 , and K 2 contacts 8 and 12. The path established to hold K2 then lights DSl through J6-3 and supplies positive bus voltage to the electronics power cable through connector J4-9. Relay K2 contacts 11 and 7 also supply ground potential to the same connector through J6-T to J4-10. The positive potential is also applied through R16 and CR29 to the bias oscillator. Capacitor C7 is provided both for decoupling and for delayed decay after power is removed. Transistors $Q 2$ and $Q 3$ operate as a low power, push-pull oscillator to provide a high-frequency signal to terminals J6-U and J6-V. The electronics assembly cable conducts high-frequency bias to all bias boards in the electronics through J4-1 and J4-2. The oscillator is tuned to 120 kHz by capacitor Cll.

Speed Change Switch

Speed change switch S selects windings of the capstan motor to provide either of two speeds. These are related by the ratio $2: 1$ and therefore can be provided for tape speeds of $3-3 / 4$ and $7-1 / 2 \mathrm{ips}, 7-1 / 2$ and 15 ips , and 15 and 30 ips , etc. Dc bus potential is supplied to either J4-6 or J4-7 in the electronics power cable, depending on the motor speed, in order to control equalizer-select relays in the electronics circuit boards.

Reel Size Switch

Reel size switch S 7 provides for adjustment of torque in fast forward or in rewind when one spindle carries the normal large reel and the other carries a light-weight reel. If both reels are the same size, the switch is left in the center BALANCE position. If the large reel is on the tape takeup side, the switch is moved toward the right, or toward the large reel (in the direction of the arrowhead on the panel). If the large reel is on the left, or supply side, the switch is moved to the left. In the center position, S 7 connects $\mathrm{J} 5-\mathrm{N}$ to $\mathrm{J} 6-1$ and J5-15. If K 6 is energized, putting the machine into fast forward, heavy dc current flows through the takeup motor, returning to the negative supply through R60. Thus J5-L is a few volts more negative than J6-S. This negative potential is applied through CR30, S7, and Rll to the rewind motor, causing it to develop small torque in the same direction the takeup motor tends to turn. This aids acceleration. Similarly, in rewind, R10 supplies reverse torque to the takeup motor, assisting in getting the tape up to high speed. When a small reel is on one side, however, this assistance is not desirable since it may tend to unwind tape faster than the other
reel can spool it. Thus S7 provides for breaking the negative line through R10 or Rll as needed. This feature is only applicable to $1 / 2$ and l-inch machines. The switch, although provided, is inactive in $1 / 4$-inch machines.

TORQUE CONTROL RELAY ($1 / 4$-inch machines only)

Due to the light weight and inertia of the small plastic reels commonly used on $1 / 4$-inch machines, there is a tendency for a loop to form in the tape between the outgoing tape guide and the reel receiving the tape if negative torque is applied through RlO or Rll before the tape has come to rest and started to move in the opposite direction. To prevent reverse torque from being applied until the tape has begun to travel in the direction of the selected mode, Kl3 is installed in the socket provided on the transport near the rewind motor. Reel size switch S 7 is not connected as stated above.

Consider the tape to be in motion in the fast forward direction with K6 energized. Pressing the REWIND pushbutton energizes K7 and releases K6. Drive torque is immediately transferred from the take-up motor to the rewind motor. Due to the momentum of the reels traveling in the forward direction, the tape does not come to an immediate stop but continues to travel in the forward direction until this momentum is overcome by the dynamic braking action caused by the reverse torque applied to the rewind motor, which is attempting to pull the tape in the opposite direction. During this slow down period, directional sense switch Sl4 is open, which maintains K13 in the deenergized position. Therefore, the circuit path to the take-up motor armature is broken at Kl3 contacts 5 and 9, causing the motor to coast to a stop under the braking action of the rewind motor only. As the tape motion comes to rest and starts to reverse its direction, Sl4 closes. Buss power is applied to K13, providing negative torque power through contacts 5 and 9, R10, etc., to the take-up motor and causing it to turn in the same direction as the rewind motor. This action reduces the drag on the rewind motor and aids acceleration as described under 'Reel Size Switch. " Thus, K13, in conjunction with directional sensing switch Sl4, prevents negative torque power from being applied to the appropriate reel motor unlid the tape has come to rest and starts to accelerate in the opposite direction.

Monitor Switching

Two pushbuttons on the transport, S10 and Sll, are arranged to transfer the output line amplifier and VU meter of each electronics circuit board from the incoming signal source to the playback and vice versa. Pressing A switch Slo applies bus voltage from J6-D through J2-9, J2-10, and S10 to J4-5, which is in the electronics power connector, causing operation of transfer relays in each module. Similarly B switch Sll applies bus potential to terminal J4-4 to cause reverse operation of the transfer relays. These switches are momentary-contact types and are not lighted.

Runout Switch

The runout switch is provided on all models of the machine. The sensing circuits associated with the switch are furnished on all series A transports but are furnished on B transports only on special order. When connected, it provides for automatic stopping of the tape before runout, automatic rewind at the end of the tape, and automatic starting of a second machine under either of these conditions. The circuit is actuated when light from an exciter lamp falls upon a photo sensor through a "window" in the tape.

Fail-Safe Brakes

For certain applications, it is desirable to include self-energizing mechanical brakes on the transport to prevent a tape spill if power fails. The fail-safe brakes, which are provided on special order, are released whenever power is on and are applied when the machine is turned off or power interrupted. Solenoid L6 is energized directly from the low-voltage dc supply. When it operates to lift the brakes, microswitch S 15 is opened, inserting 150 -ohm resistor R 73 into its path to prevent overheating of the solenoid winding.

SIGNAL ELECTRONICS FUNCTIONS

Signal electronics consist of record amplifiers, which raise the input signal to a level required by the record (heads), a bias and erase frequency power supply, and equalizer circuits and amplifiers to reproduce the signal recovered by the playback heads. Each complete electronics assembly includes a power supply, controls, and a volume indicator (VU meter).

Signal processing is either in conformance to NAB standards or Dynatrack operation. In Dynatrack recording and playback, two tracks are used. One track records at the standard NAB level, this is the H track; and the other track records the identical information, but records high frequency signals at a higher level (more recording gain), employing a pre-emphasis curve rising 15 db from 400 cycles to 15,000 cycles. When the tape is reproduced, the output is switched between the L and H tracks depending upon the amplitude of the recorded signal. When the recorded signal is at a low level the L track will provide the signal output and, of course, deemphasis of the previously pre-emphasized signal. When the amplitude of the recorded signal increase to where the distortion of the L track approaches l percent, the output will switch to the H track. Switch over from the L track to the H track, and vice versa, is automatic during the reproduce precess. The switchover is fast enough so that no discontinuity is apparent to the listener.

The overdub feature allows a record head to be used as a playback head so that a second track can be recorded in synchronism with a pre-recorded signal. This feature avoids the time lag that would occur if the playback head were to be used for monitoring during overdub operation.

NAB ELECTRONICS

One electronics module is employed for each compatible NAB equalized track. Thus, in a $1 / 2$-inch machine having standard four track heads four channels of NAB equalized signals may be recorded. In this case four electronic assemblies are required, equipped with the proper board for NAB service. If it is desired to employ the Dynatrack system, two tape tracks are required to each channel. Therefore, the four-track configuration permits a two channel Dynatrack system and only two electronic assemblies are employed, equipped with the proper cards for Dynatrack operation. Electronic Assemblies are readily converted from Dynatrack to NAB and vice versa by merely changing boards and head cable connectors at the rear of the assemblies. The following describes the operation of a complete electronics assembly arranged for NAB service.

The individual plug-in boards will be fully described after an outline of their function in relation to their service in the overall operation. Refer to figures 37 and 38 during the following discussion. The rectangular dashed areas represent plug-in units. The numbers in ovals represent connector pin numbers.

NAB Recording

The signal to be recorded is applied through connector Jlol to the primary of transformer Tl, which reflects an impedance of 20,000 ohms to the signal source. Input is through a two-wire shielded cable with the signal lines ungrounded. The secondary of Tl is connected across RECORD LEVEL control Rl00, which establishes the level of the signal applied to the record amplifier. This amplifier provides pre-emphasis, equalization, and linearization to the signal, and sufficient gain to drive the record head. A relay on the board selects equalization networks for the two tape speeds used. Linearization is selectable by means of a switch on the circuit board and is adjustable. The degree of linearization required depends on the signal level, and corrects for distortion that occurs as the signal level approaches the saturation level of the tape.

A pilot tone, used for tape-speed control, may be introduced by way of connector Jlll-1, and terminal 16 of the H and NAB Record board, to be mixed with the normal input signal. The pilot tone may be either supersonic or subsonic.

A separate amplifier is included on the H and NAB Record Board to bring the input signal to sufficient level to apply to the monitoring circuits so that this signal may be listened to and observed on the VU meter. A variable control RECORD MON. CAL. enables the meter to be adjusted so that, without the linearizer in service, 3% total harmonic distortion on playback results at 6 db above zero VU.

The main signal from the record board appears on the record relay Kl0l at terminal 9. It is normally grounded through Kl0l contact 9 and 1 but when Kl01 is operated the signal is applied through Kl0l contact 9 and 5 to the H Bias and Erase Board (1) in slot l. Whenever the RECORD button on the transport is activated, an oscillator in the transport is energized and provides 120 kHzfrom Jll 10 terminal 1 and 2 to terminals 14 and 15 of this board and all other identical boards in the other electronic assemblies of a multi-channel recorder. A power amplifier feeds the 120 kHz bias signal through a variable resistor BIAS AMP to provide the proper magnitude of bias to the record head through terminal 1 . The audio signal from terminal 22 is also passed to terminal lthrough a bias trap circuit which has no effect on the audio signal, but prevents drainage of bias power back through the record amplifier board. A noise balance control is provided which injects an adjustable DC component into the record head to correct for external fixed magnetic fields in the vicinity of the record head gap.

In order to monitor the bias and audio signal mixture by means of an oscilloscope or vtvm, the record head is returned to terminal 2 which is removed from ground by 10 ohms. Monitoring is at the TP BIAS test point and a variable control permits the VU meter, when connected to terminal 3, (set to BIAS) to be calibrated to a fixed number on its scale (-5 VU for example).

A second power amplifier, also driven by the 120 kHz signal, applies its output through terminal 21 to terminal 20 of the NAB Erase Coupler Board (3 N) in slot 3. The signal passes through an adjustable capacitance to terminal 11 , and from there to the erase head. There is a feedback path through board 3 N terminal 19, and board 1 terminal 19 , to control the amount of drive of the erase amplifier. The amount of feedback is controlled by the feedback resistor. The amplitude of the erase current may be monitored at the TP. ERASE test point on board 3N. The VU meter may be calibrated by variable resistor ERASE MON. CAL. which is feeding via terminal 22 to the VU monitor. Typical calibration provides 0 VU when erase current is adequate.

In addition to transferring the record amplifier output from ground to the bias amplifier board, relay K101 also causes indicator lamp DS 103 to light through contacts 12 and 8 and applies +28 volts to energize the bias and erase amplifiers at terminal 12 on the H Bias and Erase board (1). Another pair of contacts is used during Dynatrack operation and is discussed under that heading. Inductive surge from the coil of K101 is suppressed by diode CR101.

NAB Reproduction

Signals recorded by the H and NAB record circuits described above are reproduced from the corresponding playback head and applied to the H and NAB preamplifier board in slot 7. The preamplifier board contains high-frequency and low-frequency amplitude equalizers for two tape speeds. The proper equalizers are selected by a relay on the board, which is energized by a voltage introduced through terminal 20. High-frequency and low-frequency equalizer networks are provided for each tape speed. Phase correction networks are selected by another relay with a separate network for each speed. This relay is energized by a voltage introduced through terminal 19. The phase correction networks are not adjustable.

At the pilot connector Jlll all signals may be fed out on terminal 2 with return on 5, in order that the pilot, if any, may be extracted free from gain variations occasioned by adjustment of the GAIN CAL. potentiometer which feeds the main audio signal out on terminal 22 .

A jumper loop is provided on the terminals 17 and 16 of slot 8 when machines are furnished from the factory with only NAB boards. No card is then provided for slot 8 and the signal bypasses the slot directly to the REC. SELECT switch 103. Since it is necessary to provide a preamplifier and electronic switch card in slot 8 when the Dynatrack system is employed, this loop must be clipped open and later if converted again to NAB operation an NAB conversion card (8 N) must be inserted in slot 8 when the Dynatrack card is removed. This card is blank except for a jumper loop between terminals 17 and 16 , to again close the loop previously clipped. It is furnished with the Dynatrack conversion kit.

When the REC. SELECT switch is in the RDY position, the record head is connected to the output of the H bias and erase board; +28 volts is supplied from the power and meter assembly in slot 5 through terminal 12 to this switch, to terminal 13 of the record relay so that it may be operated by grounding its terminal 14 through diode CR102; and to terminal 10 of J110 at the tape transport.

The signal from terminal 16 of slot 8 is routed through the REC. SELECT switch to the REPRO. LEVEL control and an attenuator comprising R104 and R105. With the METER switch in the CAL. position, the signal from the attenuator is routed to the line amplifier circuit card in slot 6 , where it is amplified and applied to the outgoing line. A selector switch at the output of the line amplifier normally connects the output through terminal 21 to transformer T2, which is provided with impedance matching resistors R108 and R109. The output impedance may be set by means of switch S106 to 150 or 600 ohms. Switch Sl05 is a three position switch providing 150 -ohm, or 600 -ohm termination of the outgoing line when it is not terminated externally. The outgoing line connects to connector Jl02. When the selector switch at the amplifier output is set to route the signal to terminal 20 , an 8 -ohm lousdpeaker may be driven directly from terminal 3 of PILOT connector Jlll.

Speaker return is to terminal 6. Earphone monitoring is provided by jack Jlo3. This jack is "floating" and headphone leads should not be grounded. The output signal from T2 is applied through terminals 2 and 4 of the line amplifier board to an attenuator which supplies the attenuated signal for the VU meter through terminals 3 and 4, through the METER switch in positions 1 and 2 , to terminals 14 and 16 on the power and meter assembly. Resistors in the attenuator may be changed to modify the working level from the +4 dbm normally provided. See table 10. Choice of $150-$ ohm or 600 -ohm output does not appreciably modify the VU meter reading.

Since the meter attenuator is fixed for any given operating line level, and the fixed gain attenuator R104 and R105 is selected in the CAL. position of the METER switch, it is only necessary to adjust the GAIN CAL. potentiometer on the playback preamplifier board (7 and 7/9) to assure that a standard reference level tape is reproduced at the proper indicated level. Typically, such tapes provide a reference tone of 700 cycles which should read zero VU , attainable by adjustment of this control.

Having been so calibrated, the METER switch may be turned to the SIGNAL position. The REPRO. LEVEL gain control is then substituted for the calibrated attenuator, to provide convenient adjustment of playback level. When in this position, the signal output may be either the tape playback or the input signal. This transfer is provided by Kl02 contacts 8,4 , and 12 under control of pushbuttons Slol and Sl02, the $A-B$ output selectors.

Note that when the METER switch is in the SIGNAL, ERASE, and BIAS positions, the audio signal is always fed in the same manner to the output, although the meter is connected to various circuits.

The Meter and Power Assembly, located in slot 5, is powered from the transport through Jllo terminals 11 and 12 . It provides regulated +28 volts at terminal 12 of all electronics. Non regulated dc is provided at terminal 18 to power the coil of K102 and the A and B lamps. 24 volts AC is provided at terminals 2 and 3 for external use, if needed. A resistor may be replaced with alternate values to provide control of the girghtness of the lamps in a remote meter fed from terminals 3 and 7 through the remote meter connector J109 terminals 3 and 6 .

One position of the REC. SELECT switch, Sl03, has been discussed, the RDY position. In the SAFE position the coil of K101 is opened so that the record electronics are locked off to provide maximum protection for previously recorded tapes. All other circuits remain normal. In the O. DUB position the record head is completely disconnected from its normal feed and becomes a playback head.

When the record head is so connected, it feeds terminals 10 and 14 of the Overdub Preamplifier (7/9) in slot 9. This preamplifier is identical to the H and NAB preamplifier previously described except for the addition of an input transformer. When the record head is used in playback it matches closely the frequency response and gain of the normal playback head. Due to its wider gap, however, the extremely high frequencies suffer some attenuation depending upon the tape speed.

If the overdub feature is desired, it is highly recommended that a separate preamplifier be employed in each position; a 7 board in slot 7 and a $7 / 9$ board in slot 9. It is not necessary that the user have both the H and NAB Preamplifier and the Overdub Preamplifier since the latter may be extracted from slot 9 and reinserted in slot 7. The input transformer is then bypassed and operation is identical to the normal preamplifier.

DYNATRACK ELECTRONICS

Read the above description of the NAB electronics for more details of certain aspects of the electronics common to both systems. Refer to the electronics block diagram, figure 34.

As in the description for NAB above, the signal is recorded directly on the H or NAB track. There is a tap in the H and NAB Record Board which is not used for normal NAB recording, but which feeds out the signal fully equalized for NAB operation on terminal 2. This is applied to the L Record and Bias Board (3D) in slot 3. Note that this replaces the NAB Erase Coupler Board (3D) used for NAB recording. Board 3 D provides a record amplifier to drive the second, or L, record head; and it includes the special equalizer required by the Dynatrack system. It includes a linearizer as previously described. Its output through terminal 15 is fed to the record relay Kl01, where it is normally grounded by contacts 10 and 2 .

During recording, the signal is fed from Kl0l contacts 10 and 6 back to terminal 16 where it passes through a tuned bias trap, and picks up bias injected at terminal 21 . The signal goes out on terminal 18 to the record head for the L track. The record head return lead is to ground. TP. BIAS provides a test point and the BIAS MON CAL. control permits calibration of the VU meter to indicate proper bias current for the L track when the meter switch is in the ERASE position.

Terminals 11 and 20 have no connection on this board; these were used to furnish power to the erase head in the NAB configuration. When Dynatrack is employed no erasing facility is provided. Instead, the erase power amplifier on the board in slot l is used to feed power on terminal 20 to terminal 21 on the L Record and Bias Board, where the BIAS ADJ control provides adjustment of bias current in the head. The feedback resistor feeds from terminal 19 of the H Bias and Erase Board and in this case a lower resistance holds down the excitation of the amplifier to a greater degree than when it is used for erase power.

The LEVEL control on the Dynatrack L Record Amplifier board provides for proper adjustment of the recorded level of the L track with respect to the H track, for any given frequency. On playback the H track is reproduced in the normal manner by the board in slot 7 as described above. The L track, on the other hand, is reproduced by the L Preamp and Switch Board (8 D) which must be inserted in
slot 8. As described above, when this is employed the NAB conversion board (8 N) must be removed from slot 8 to break the connection between terminals 17 and 16. If this board was not previously provided the link between terminal 17 and 16 behind the connector must be cut, since it is necessary for the signal from the H track to pass through the electronic switch on the L preamp and Switch board.

In addition to providing a preamplifier, it is necessary for this board to provide equalization to deemphasize the specially recorded characteristic of the L track. Thus at terminal 16 the signal is identical in frequency response and level to that from the H track coming in on terminal 17.

Since the L track is recorded at a much higher level than the H track for some frequencies, it is necessary to switch from " L " to " H " at high signal levels, and this is done by the electronic switch under control of its Schmitt trigger. The switching level is determined by the setting of the TRIG. control. Following the switch an output amplifier feeds the signal to the line amplifier, etc., in exactly the same manner as previously described. The L preamplifier and switch board also includes variable equalizers to permit adjustment of overall frequency response, and phase equalization for 15 ips , since the Dynatrack system is designed to be operated only at this speed.

DETAILED CIRCUIT DESCRIPTIONS

The following paragraphs contain detailed descriptions of each of the circuit boards, and the Meter and Power Supply Assembly.

H and NAB Record Amplifier (4) (See Figure 39)

The input signal to be recorded is applied at terminal 14 , after it has passed through the input transformer and level control. Cl couples it to Ql , which is biased to the proper operating point by Rl and R2. After amplification the signal is coupled by C3 to an equalizer network, producing a preemphasis characteristic at the high and low frequency extremities of the spectrum in accordance with standard NAB practice. This is accomplished as follows.

Consider R6 and R7 as an attenuator network, with R8 short circuited, as it effectively is at high frequencies because of C4 and C5. This attenuator network reduces the voltage swing at the junction of $R 6$ and $R 7$ from what it was at collector of Q1. However, if a bypass capacitor C18 or C19 is connected across R6 it permits the high frequencies to suffer less attenuation. The degree to which this is true depends on the setting of the variable capacitor. Practical values of Cl8 and Cl9 make it necessary for the junction of $R 6$ and $R 7$ to appear always as a very high impedance. Current cannot be drawn from this point without upsetting the equalization characteristic. Thus, the junction is used to drive a field effect transistor, Q2. C4 and C5 show increasing impedance as the signal frequency is lowered;
therefore, the voltage at the junction of $R 6$ and $R 7$ would continue to rise as the frequency drops, except that R8 provides a shelving off to prevent unnecessary sensitivity to subaudible frequencies.

Relay Kl automatically changes the high frequency equalization when tape speed is changed. The output of Q2 is applied to terminals into which may be inserted values of C8, C20, R11, and R12 to adjust for any requirement arising for shelving equalization in addition to the normal NAB equalizers just described. All four components may be eliminated in many instances, a jumper being furnished across the Rll or C20 terminals.

After this network the signal is fed to the base of $Q 3$ whose bias is set by R13, R14, and R15. This operates with Q4 in a Darlington circuit to provide gain and low impedance output at Cll to drive the NAB record head. R18 normally provides a degree of degeneration, determined by the setting of R20, and R19 in series with C12, and C2l. But the degree of degeneration can also be reduced by conduction of Q5 and Q6 when S 1 is closed. Q5 and Q6 act to change the degeneration with instantaneous signal amplitude, thus they tend to deform the signal whenever its amplitude attains a value sufficient to overcome their contact potential. This results in a distortion, inverse to that which overload of the tape normally introduces. By employing Q5 and Q6 in this manner, and properly adjusting the overall degeneration by means of R20, the LIN ADJ. control it is possible to introduce the proper corrective distortion into the recording process so that the normal 3% tape distortion point shows somewhat less than 1%.

Cll feeds the record head connected at terminal 22. R22 is a resistor in series with the head to establish a constant current characteristic. R23 provides a high resistance path to ground so that the ground side of Cll will always be discharged, even when no head is connected to terminal 22. This is a menas of preventing accidental record head magnetization.

The signal effective in driving the record head may be extracted at terminal 2 to be applied to the L track record amplifier when the Dynatrack system is employed.

Terminal 16 provides a point for injecting a pilot frequency for playback tape speed control. This is useful in motion picture synchronization. The pilot for either a high or low frequency system may be employed. Cl4 couples the input signal to Q7. The gain of Q7 is adjusted by the combination of emitter resistors R27 and R28, which is bypassed by C16 to provide the proper range of signal levels to R30. This control, RECORD MON CAL., can be conveniently adjusted to serve the input signal audio monitoring and input signal VU meter monitoring circuits. R29 and C17 are provided to give a slight rise in output at 15 kc to make up for losses in the input transformer, wiring, and meter sensitivity occurring at the extreme end of the spectrum.

L Record and Bias (3D) (See Figure38)

Signals to be recorded are first applied to the NAB record board (H and NAB Record Amplifier) (4), and after proper equalization to obtain the NAB recording characteristic, the signal is fed to this board at terminal 2. Since this amplifier must adequately record signals of extremely low level, it is essential that it contribute a minimum of self-generated noise. Therefore, Ql which must be fed from a comparatively high impedance source, is a field effect transistor. Its output feeds the LEVEL control whose output feeds Q2. Since R9 is a relatively high resistance, 510 ohms, degeneration is high in this stage. It is bypassed by the network R7, C5, and C6; and these capacitors begin to take effect above 400 Hz , causing the gain of the stage to rise. R7 provides a limit to the rise so that the gain of Q2 shelves off at $15 \mathrm{kHz}, 8 \mathrm{db}$ above its 400 Hz value. The output of $Q 2$ is coupled to $Q 3$ where a similar operation occurs with about 7 db lift at 15 kHz . These two equalizer amplifiers provide a rising frequency response starting at 400 Hz and shelving flat at 15 kHz with a total of 15 db rise. This gives the distinctive record equalization of the Dynatrack system. Ll and C8 constitute a series resonant bias trap (120 kc). The signal from Q3 is applied to the Darlington amplifier Q4 and Q5, and the output and linearity features are the same as described above for the NAB record board.

The signal output from this record amplifier goes from terminal 15 to the record relay, then returns to terminal 16 , going through the bias trap $\mathrm{L} 2, \mathrm{Cl} 19$ to terminal 18 and then directly to the record head. Bias power from the bias and erase board is applied at terminal 21. C16 tunes the output stage of the bias amplifier to resonance through the return lead on terminal 13. R31, fed from Cl8 provides feedback control of the bias power amplifier by connection to terminal 19. R 32 BIAS ADJ. adjusts the amount of bias applied to the record head.

CR1 and CR2 feed both ends of the NOISE BAL. potentiometer R28. Consider the wiper run up to the top. CRl then supplies a positive potential directly to R29. R30 allows some current of positive polarity to leak through R32 and the record head. If the wiper is run all the way to the bottom, CR2 supplies a negative polarity and the DC current in the head is in the opposite direction. By varying the position of the arm more or less DC current can be permitted to flow through the head in either direction to balance out residual magnetization of the record head or strong external constant magnetic fields, during the recording process.

Terminals 14,17 , and 22 provide connection to the $V U$ meter when the METER switch is in the ERASE position. R26, BIAS MON. CAL., provides for calibration of the monitoring meter when it reads the bias strength. When the recording circuit is adjusted to provide proper bias to the head for optimum performance, this control should be adjusted to read -5 VU , and then left without further adjustment for refer ence purposes.

Bias and Erase Amplifier (1) (See Figure 36)

Whenever the transport is put into the recording mode, a 120 kc signal is generated within the transport, and applied to all electronics assemblies where it appears on terminals 14 and 15 of each Bias and Erase Amplifier. Tl operates as a bridging transformer. It has two secondaries. One of these feeds the base of Q2 through resistor R4. This resistor is employed to permit insertion of a feedback signal from R2h. Ql amplifies the 120 kHz signal and provides sufficient power to drive the push sull amplifier $Q 5$ and $Q 6$. C13 and C14 tune the secondary of T4, and C16 and C17 tune the primary of T 5 in order to minimize harmonic distortion. Even order harmonics are particularly objectionable since they result in increased background noise recorded into the tape.

The output of Q5 and Q6 is fed through T5 and C18 to R19 and R24, the latter variable to control the amount of 120 kHz bias signal fed through terminal 1 to the record head. The audio signal comes from the record amplifier and is applied at terminal 22. It passes without loss through the tuned circuit L2, C19, and C21 since this is only tuned to present a high impedance to 120 kHz , thus preventing loss of bias power back into the record amplifier.

CR2 and CR3 each operate as half wave rectifiers. If the arm of R23 is run to the end connected to CR2, then the upper end of R2l will have an average negative potential. Conversely, if the arm is run to the other end, then the upper end of R2l will have an average positive potential. R20 allows current set up by such potential to flow through R19 and R24 to the record head, thereby making it possible to inject a very small but adjustable DC current into the head in addition to the audio and bias frequencies to allow minimization of noise resulting from strong external magnetic fields or even order harmonic distortion from the bias supply.

These circuits are activated by application of potential at terminal 12. In order to prevent a recorded thump when the record button is depressed, R27 and C20 are provided to permit the DC bias on the base of Q1 to rise slowly, and Cl5 is provided across R17 for the same purpose on $Q 5$ and Q6. The bias envelope therefore grows to operating level in a matter of about 10 milliseconds. When the recording mode is deactivated another thump or click is avoided by allowing reservoir capacitor C2 to permit the bias waveform to decay to zero over a period of about 60 milliseconds. Rl allows $C 2$ to charge at a reasonable rate when the circuits are activated without causing a surge on the power supply, but CRl permits the capacitor to be connected directly to the load during discharge. Ll and Cl constitute a filter to stop bias frequency ripple on the power bus connected to terminal 12.

The amount of drive applied to $Q 5$ and $Q 6$ is controlled by feedback resistor R26, which also improves the waveform at the output by cancelling out internally generated distortion products.

The second winding of $\mathrm{T} l$ feeds the 120 kHz signal to an almost identical circuit except that the output transistors $Q 3$ and $Q 4$ have a higher power rating in order to supply the erase head with sufficient drive to completely erase a saturated tape. The description above applies except for a few points. The secondary of T3 is tapped to provide two output impedances. One of these, connected to terminal 21 supplies erase power in the case of a NAB setup. In Dynatrack operation no eraser is excited and power is fed from terminal 20 to the record head of the L channel. This amplifier then operates as a bias supply rather than an erase supply. The feedback resistor, which in this case is external to the board, is connected between terminals 21 and 19 in the erase setup and between 20 and 19 in the Dynatrack setup. The resistor values are naturally different for the two cases. Erase or L bias current is monitored across the 10 ohm resistor $R 29$ between terminals 16 and ground. The NAB or H bias current is monitored from terminal 2, the record head return lead to ground, with R25 providing the meter calibration. This bias current is read on the meter when the meter switch is in the BIAS position.

Meter calibration for the monitoring taken across R29 is accomplished by a control on the L Record Amplifier Board when Dynatrack is employed, or by a control on the NAB conversion board which fits into the slot occupied by Dynatrack's L Record Board (slot 3) when the electronics are converted to NAB operation. In the Dynatrack system the meter then indicates bias for the L track. In the NAB system it reads erase current. In either case, the reading is obtained by putting the meter switch into the ERASE position.

H and NAB Preamplifier (7) (See Figure 42)

This plug-in printed circuit board assembly provides the required signal amplification of the playback head signal to drive the output line amplifier. In addition, the assembly performs the necessary frequency equalization and phase correction for two tape speeds.

The playback head for the NAB or Dynatrack H track is connected to the assembly through terminal 4 which provides the signal path through C1 and R2 to the base of Q1, the first amplifier stage.

The collector of Q1 is direct coupled to the base of Q2, providing a signal path and DC bias to the second amplifier stage. The output of $Q 2$ is direct coupled to the base of Q3. A feedback path is also provided from the collector of Q2 through one of two RC frequency equalization networks to the emitter of Ql. Relay Kl in the normal or deenergized condition (as shown for high speed tape operation) places C7, R18, R19, and R20 in the feedback path. When Kl is energized, C8, R21, R22, and R23 are placed in the feedback path, providing the proper frequency equalization for slow speed tape operation. C7 (or C8) with R20 (or R23) controls the point where the customary 6 db per octave correction becomes no longer effective at higher frequencies. R19 (or R22) controls the point at very low frequencies where the relation again no longer holds true and the amplifier shelves off. The proper operating point for Q1 and Q2 is maintained by the dc bias established at the junction of

R8 and R9 in the emitter circuit of Q2. This dc bias is applied through R5 to the base of Q1, thus providing a controlled amount of negative feedback to Ql in relation to the input signal level. C4 filters out any ac component present at the junction of R8 and R9.

Q3 operates as a phase distortion correction stage. Considerable rotation of phase normally occurs in the overall process of recording and playing back tape, the situation being increasingly pronounced at shorter wavelengths. In copying tapes, the effect is compounded. Q3 and its associated circuits provide an effective correction for such distortion.

A paraphase signal output condition exists between the emitter and collector of Q3; that is, equal amplitude with 180 degree phase difference. C5, which couples the collector signal to the base of Q4, presents a high impedance to the low frequencies contained in the recorded signal. R13 (or R13 in series with R14, depending upon the state of K2) feeds the emitter signal directly to the base of Q4. As a result of this action, the low frequency phase components present at the emitter of Q3 predominate at the base of $Q 4$ and are 180 degrees out of phase with the same signal at the collector of Q3. Conversely, capacitor C5 presents a very low impedance to the higher signal frequencies allowing them to pass readily to the base of Q4.

At intermediate frequencies, the vector sum of R13 (R13 and R14) causes the signal to be applied to the base of Q4 at some intermediate phase angle between zero and 180 degrees while the amplitude remains constant throughout the entire frequency range.

The result of this frequency/phase shift action cancels the inherent phase distortion on the signal caused by the magnetic transfer characteristics when the signal was recorded on the tape.

In fast tape speed operation, Kl is deenergized as shown. During slow tape speed operation Kl is energized which removes R14 from the circuit.

Emitter follower Q4 provides the required signal isolation and impedance output requirements. C6 couples the signal from the emitter to the gain control R17, and then out to the $A-B$ switching relay through terminal 22 . R16 and terminal 21 provide an outlet for signals bypassing the gain control. This output is provided for the extraction of any pilot signal mixed with the audio. Filtering of the pilot from the remaining signals must be accomplished externally of the signal electronics provided with the Series 400 equipment.

Q5 is a series voltage regulator which provides regulated power from the input bus terminal 12 to the four transistor stages in this assembly. R24 and R25 establishes the proper operating point for Q5, thus establishing a fixed voltage drop across Q5. C15 provides filtering of any power supply ripple on the regulated voltage. C9 filters any ripple at the base of Q5.

H and NAB Preamplifier with Overdub (7/9) (See Figure 44)

This unit is exactly the same as the " H " and NAB preamplifier described above and is interchangeable with it. It includes an input transformer which is employed when it is desired to monitor a recording using a record head as a playback head for synchronizing purposes. In this application the record head is connected to terminals 14 and 17.

The output of Tl at terminal 16 is automatically connected to input terminal 4 when this card is inserted in slot 9.

Maximum convenience is afforded if a conventional H and NAB preamplifier or an overdub preamplifier is inserted in slot 7 and an overdub preamplifier is also inserted in slot 9 , since it is then only necessary to employ the record select switch to change from normal record to overdub operation. Economy but less convenience is obtained with a single overdub preamplifier, changing its location from slot 7 to slot 9 when changing the switch from normal record to overdub. Great care must be exercised to turn off the machine completely before moving the $7 / 9$ card from slot 9 to slot 7 since the playback head may be magnetized from a charge residual on $C 1$ unless sufficient time is permitted for it to discharge completely.

Line Amplifier (6) (See Figure 41)

This is a full-spectrum flat response amplifier which provides sufficient gain and output power to adequately drive an outgoing line at up to peak level of +28 dbm (600 ohms) or to drive a loudspeaker with up to one watt peak excitation (distortion 1% THD).

Ql is an emitter follower accepting an input impedance of 10,000 ohms or lower, and providing low impedance excitation for Q2. Q2 drives Q3 and Q4 (complementary symmetry types) to result in push-pull excitation of Q5 and Q6. A required static potential difference between the bases of $Q 3$ and $Q 4$ is established by the contact potential drop across CR1, CR2, and CR3.

CR4, R20, and C12; CR5, R19, and C11 are drift compensation networks to stabilize the operating points of $Q 5$ and $Q 6$. DC operating point for these two transistors is set by R13, R14, and R15; and Q2, Q3, and Q4. A feedback path through C13, R21, and R22 assures minimum distortion for all signal frequencies. C15 and R23 provide a stabilization network to reduce the possibility of high frequency oscillations (parasitics) when certain types of loudspeakers are connected through Sl to terminal 20, and ground. In the alternate switch position the amplifier feeds out on either terminal 21 or 22 to the matching output transformer mounted in the main module, whose purpose is to match the amplifier to a 150 or 600 ohm line. R24 provides a small impedance in series with certain type transformers which would otherwise approach a short circuit at extremely low frequencies and thereby upset the stability of the amplifier at frequencies in the order of one cycle or less.

R1 and R3 are fixed resistors which may be readily changed to alternate values to change the working line level as indicated by the VU meter. The amplifier is normally equipped with the proper values for reading a plus four dbm 600 ohm line. To operate from a +6 , +8 , or $+14 \mathrm{dbm}, 600$ ohm line, select $\pm 5 \%$ calibrating resistors according to the following table 10 .

Table 10. Line Operating Level Calibrating Resistors

LINE OPERATING LEVEL - 600 OHMS	VALUE OF CALIBRATING RESISTORS	
dBm	R 1	R 3
+4	3. 9 K	7. 5 K
+6	4.7K	6. 2 K
+8	6. 2 K	4. 3 K
+14*	7. 5 K	3. 3 K
* Operated in 150 ohm position with R 109 on switch Sl06 removed.		

CR6, CR7, CR8, and S2 are associated with the automatic A-B transfer switching system. CR6 and CR7 are isolating diodes permitting all modules to be operated from pulses originating in the transport, but preventing the transfer buttons on any single module from simultaneously activating the transfer circuits of other modules. CR8 is an inductive suppression diode effectively across the coil of the $A-B$ transfer relay.

L Preamplifier and Switch (8D) (See Figure 43)

The playback head for the L track in the Dynatrack system is connected with the signal lead at terminal 6 , the signal return at terminal 7 , and the shield of the connecting cable which covers these two conductors is connected to 8 . By the shortest possible physical path the signal is coupled through Cl to the base of Q1. The signal and dc output of Q1 are applied to the base of Q2 where they are amplified. The signal is fed back to the emitter of Q1 through the equalizer network Cll, R47, R48, and R49. Cll with R49 controls the point where the customary 6 db per octave correction becomes no longer effective at high frequencies. R48 controls the point at very low frequencies where the relation no longer holds true and the amplifier shelves off.

Q1 and Q2 are at all times properly biased due to the feedback path from emitter of $Q 2$ to the base of Q1 through R5.

The signal is passed on to $Q 3$ which is a phase distortion correction stage. Considerable rotation of phase normally occurs in the overall process of recording and playing back tape. The situation is increasingly pronounced at shorter wavelengths. In copying tapes the effect is compounded. $Q 3$ provides a very effective correction for such distortion through C5 and R13. Note that the signal voltage at both the collector and emitter are identical but 180 degrees out of phase.

For low frequencies C5 is a very high impedance, and R13 feeds its signal directly to the base of $Q 4$ which presents a high impedance since it is an emitter follower. At very high frequencies, on the other hand, $C 5$ has a very low impedance and consequently it feeds its signal to $Q 4$ at a phase displacement of 180° from that of R13. At intermediate frequencies the vector sum of the R13 and C5 signals result in a signal at Q 4 of some intermediate phase angle between these extremes, but the amplitude remains constant which is most essential.

Emitter follower Q4 feeds the signal to the gain controls R15 and R27. The output of R15 is applied to the deemphasis network R16, R17, C7, R18, R19, and C8. Its output at C9 represents an equalization characteristic which is exactly the inverse of the preemphasis curve generated in the Dynatrack record board. In some cases C7 and C8 are trimmed by small parallel capacitors. The signal from C9 is applied to a double emitter follower circuit, Q 5 and Q6. This is to provide a conveniently low impedance at the output signal terminal 16 , yet provide a very high impedance to the output of the equalizer at C9. Switch $S 2$ removes the deemphasis equalizer from the circuit so that playback from a standard NAB alignment tape may be used for aligning the adjustable equalizers. It is then only necessary to operate $S 2$ to insert the network in order to convert the board to Dynatrack equalization.

Under normal low signal level conditions the preamplifier feeds directly through Q6 to the output. The output of the second or H track is applied at terminal 17. R50 is a photo resistor unit. The lamp is normally dark so that resistance of the photo element is very high (approximately 100 megohms). When the lamp is lit, however, it drops to a very low value, (less than 500 ohms). When this happens the high or H track provides the signal source and short circuits the high impedance junction of R18, R19.

The lamp in the photo resistor unit, R50, is controlled indirectly by the signal level at the output of Q4, as follows:

R27, TRIG., provides an adjustable amount of this signal to a transistor amplifier Q8. Q9 is normally conductive in the absence of an input signal from R32 because its base is connected to the positive bus through R33. This causes the collector to be at a low voltage due to voltage drop across R34, and since the base of Q10 is direct coupled through R36, Q10 is cut off.

If the peak excursion of the audio input signal exceeds a certain critical value in the negative-going direction, the Q9 collector current is reduced. The collector potential rises, bringing Ql0 into conduction. This causes the emitter potentials to rise further cutting off $Q 9$ and driving Q10 into saturation. There are thus two stable states for the collector of Q10. When the peak signal amplitude drops below a certain critical value, Q10 cuts off by the same process in reverse. Q9 and Q10 constitute a Schmitt trigger.

In its normal nonconductive condition Q10 applies zero volts potential through R39 as measured from base to emitter of Qll. Q1l is therefore nonconductive and the junction of Cl5 and R40 is at zero volts potential above ground. Whenever Ql0 is rendered conductive, and this can be just a few degrees of a single cycle of any frequency up to 15 kHz , Qll is also rendered conductive. It immediately charges Cl5. This capacitor does not lose its charge for about 5 milliseconds through R41.

The instant a charge is placed on Cl5 by conduction of Qll this above ground potential is applied through R42 to the base of Q12 bringing it into full conduction. When Cl5 is discharged, Q12 is fully cut off. Q12 is a high voltage transistor operating from the 120 V DC supply at terminal 15 . When Q12 is conductive the 120 V supply furnishes current through R45 and R5l to the neon lamp in the photo resistor unit in parallel with R43. The lamp lights and causes the resistance of the photo resistor element to drop, permitting the signal from the H track, terminal 17, to be applied to Q5 instead of the signal from the L track since it shorts out the latter. When Q12 is cut off the collector potential rises, permitting the pilot indicator lamp DSl to light. R43 causes the voltage across the lamp in the photo resistor unit to drop well below its extinction voltage so the resistance of the photo resistor rises to its dark value.

When Qll becomes conductive, Cl5 charges very rapidly causing the lamp in the photo resistor unit to light within one millisecond after a signal component amplitude exceeds the triggering level. When Qll cuts off, however, Cl5 discharges over a considerable period of time assuring that the lamp is not extinguished until the succeeding cycle of signal is observed to see if it is of sufficient amplitude to again trigger the Schmitt and keep the lamp lit. The lowest frequency of interest in this regard is about 400 Hz .

Sl has three positions. In the center AUTO position the photo resistor is controlled automatically by the incoming audio signal. In the HI position the base of Q1l is connected to ground, so as to keep DSl off at all times and the lamp in R50 on. In the LO position the base of Qll is connected to the positive supply, cutting it off, turning on DSl and cutting off the lamp in R50.

Q7 is a regulator transistor intended to drop the input bus voltage by a fixed amount determined by the values of R25 and R26, and to filter out any power supply ripple by means of C18 and Cl7.

Meter and Power Supply Assembly (5) (See Figure 40)

This unit contains the power transformer, a large filter capacitor, the VU meter, and a regulator circuit to assure that the output of +28 volts is maintained within a few millivolts under varying load conditions.

Line voltage is applied to terminals 5 and 20 , through the $1 / 2$ ampere fuse Fl to the power transformer. The transformer secondary feeds a bridge rectifier CR1, CR2, CR3, and CR4 charging Cl through surge limiting resistor R1. Ql is the power regulator transistor. 22 has a very low resistance and is used to monitor the load current. Its action will be described below. The regulated dc output is taken from terminal 12, positive, and terminal 9, negative and ground. R7 and R8 areinseries across the output terminals. Any variation in output voltage is therefore monitored by the base of $Q 3$ which amplifies the base voltage variation because the emitter is kept at constant potential by zener diode CR6. The amplified variation is applied to the base of $Q 2$ where it is further amplified and applied to the base of Q1, thus compensating for the initial variation.

If the power supply is loaded too heavily, so as to possibly damage Ql, the voltage drop across R2 causes a potential difference to occur across the base and emitter of Q4. However, this is only after the drop across R2 is sufficient to exceed the contact potential of CR5, and CR5 becomes conductive. Thus this circuit is inactive until a definite load is exceeded. When $Q 4$ becomes conductive, it takes control of the regulator circuit and causes the output voltage to drop with increasing load, thus protecting the control transistor Q1.

Terminals are provided for $R 9$ which may be jumpered out for maximum brilliance of the meter lamps. Rl0 is a similar resistor or jumper for the lamps of an external remote meter.

Resistors Rll, R12, and R13 are part of the A-B transfer circuit, other components of which are wired into the main assembly.

NAB Erase Coupler (3N) (See Figure 37)

This is a very simple board which connects the erase power amplifier on board 1 to the erase head and permits monitoring erase current. When switching to Dynatrack this board is replaced by the Dynatrack record amplifier which fits into the same slot and rearranges connections so that proper bias is supplied to the Ltrack.

When this board is used, 120 kHz power from the erase amplifier is supplied to terminal 20. Cl forms a resonant circuit with the erase head to provide maximum head current. Rl is the feedback resistor controlling the overall erase amplifier drive. Terminal 17 is connected to the head return which is isolated from ground by 10 ohms in the erase amplifier chassis. This point and the test point connected to it becomes a monitoring point for 120 kHz current. R3 permits erase meter calibration.

SCHEMATICS

This section contains schematics of the tape transport, electronics assembly, and each of the circuit boards used for NAB and Dynatrack operation.

This 3M M23 manual
 was
 "scanned by the klettster"
 as a GIFT*

to those who have these machines and want to keep them operational

The 3M M23 was the first 3M iso-loop tape recorder for professional use

3M M23 machines were around 45 years old at the time this scan was made

enjoy this... keep the reels turning

$*_{\text {if some opportunist charges you money for this pdf he's making money from no }}$ investment other than his time, trolling around on the interweb finding this and other docs, downloading and flipping multiple copies for cash - like a money machine... whereas the klettster has several hours and $\$ 36$ in costs (for scanning the larger pages) invested in to this... and is asking nothing... other than that you use and enjoy... maybe I am the idiot and the trolling pdf reseller is the genius...

I'll leave that for others to debate.

Figure 31. Tape Transport Schematic

BOTTOM

Layout of Components on Logic Board 23013 B060
viewed from Component Side

Figure 34. Electronics Block Diagram

Figure 35. Remote Control Assembly Schematic

Figure 36. Bias and Erase Amplifier Schematic

```
NOTES: UNLESS OTHERWISE SPEGIFIE?
1)
    RI SHONN BUT NOT USED.
```


Figure 37. NAB Erase Coupler Schematic

Figure 38. Dynatrack L Record Amplifier Schematic

Figure 39. H and NAB Record Amplifier Schematic

Figure 40. Electronics Assembly (Meter and) Power Supply Schematic

PHONE
Line in

VU METER
VU METER
A OUT
A IN
B OUT'
B IN
$+Z T V$
LOUDSPEAKER OUT

Figure 41. Line Driver Amplifier Schematic,

Figure 42. H and NAB Reproduce Preamplifier Schematic

NOTES: UNLSS CTHEF WISE SPECIFIED

1. ALL PESLSTAACE VALINF: Are.
2. ALL CAFCCITHICE VALUES ARE
a 2% CAPACITANCE VALUES
3. ALL IN MICROFARADS.

SCHEMATIC NO. E23059B090 REV B
Figure 44. H and NAB Preamplifier with Overdub Schematic

Figure 45. Dynatrack Power Supply Schematic

PARTS LISTS

INTRODUCTION

This section contains parts lists for the 3 M Brand Professional Audio Recorder. Drawings for mechanical assemblies are included to aid in parts identification. Electrical parts are identified by reference designators on the assemblies of which they are a part.

The parts list are arranged in alphanumerical order according to their part number which is in the upper right corner. When an assembly drawing is included, it follows immediately after the parts list. The parts list and drawing numbers are the same for all assemblies with one exception: parts list 23013B990 is for drawing 23013B000.

ORDERING REPLACEMENT PARTS

Parts should be ordered through one of the Mincom Division service offices listed below. 3 M recommends that whenever possible, and particularly when an instrument is used in a critical application, the user maintains a minimum stock of spare parts. The Mincom Division has specialized personnel ready to assist the user in making a selection of spares. Any additional information required can be obtained by contacting the service offices listed below.

Western U.S.	3M Company Mincom Division 300 South Lewis Road Camarillo, California 93010 $(805) 482-1911$
Eastern U.S.	3M Company Mincom Division l750 Pennsylvania Avenue Suite l100 Washington, D.C. 20006 (202) 298-9200

When ordering parts the following information should always be supplied:

1. A description of the part, obtained from the parts list.
2. The 3 M catalog number.
3. The manufacturer's part number.
4. The schematic reference designator, if applicable, given on the applicable schematic and on the parts list.
5. The part or type number of the major assembly as shown on the name plate, and the serial number of that assembly.
6. The 3 M sales order number applying to the complete system or order

The following table lists each of the parts lists included in this manual. To locate a parts list, determine the part number or assembly name and locate it in the following table. The referenced page number may then be used to find the parts list.

Table 11. Parts List Index
Part No.

23000B000 23000A010
23000A015
23000A030-1
23000A030-2
23000A 310 23000A900-1
23000A900-2
23000A900-3
23000A900-4
23000A900-5
23000A900-6
23000A900-7
23000A902
23000A905
23000A940
23000A950
23000A951
23000A952
23000A960-1
23000A960-2
23000A970
23004A000
23004B010
23004A030
23004A050
23004A900
23007C010-1
23007C010-2
23007C010-3
23007C010-4
23007C010-5
23007A030-1

Description
Catalog No.
Page No.
Professional Audio Tape Recorder
83-5990-0565 168

Interconnecting Cable Assembly
83-4570-0345
170
Interconnecting Cable Assembly
4 Track Reproduce Head Cable Assembly
8 Track Reproduce Head Cable Assembly
Film Sync Head Cable Assembly
83-4570-0389 172

Preplay Head Accessory Kit
2 Track 1/4" Preplay Head Accessory Kit
2 Track l/2"' Preplay Head Accessory Kit 83-5990-0569
83-5990-0568 176
2 Track 1/2 Preplay Head Accessory Kit 83-5990-0569 177
3 Track 1/2" Preplay Head Accessory Kit 83-5990-0570 178
4 Track 1/2' Preplay Head Accessory Kit 83-5990-0571 179
4 Track l" Preplay Head Accessory Kit
83-5990-0572
180
8 Track l" Preplay Head Accessory Kit
Electronic Mounting Installation Kit
Preplay Reproduce Head Mounting Assy.
Narrow Cover and Trim Kit
83-5990-0573 181
83-5990-0416 182
83-4320-1751 183
Tape Editing Switch Assembly, Foot Operated

83-5990-0440 184

Foot Switch Chassis Assembly
83-4550-5298 185/186
Relay Bracket
Head Mounting Plate Connector Kit, 1/2"
Head Mounting Plate Connector Kit, $1^{\prime \prime}$
Transport Tilting Kit
Takeup Reel Motor Assembly
Direction Sensor Printed Circuit Board
Assembly
Fail Safe Brake Actuator Assembly
Reel Motor Rewind Assembly
Brake Kit Assembly, Mechanical
3 3/4-71/2 IPS Capstan Motor Assy.
71/2-15 IPS Capstan Motor Assy.
15 - 30 IPS Capstan Motor Assembly
50 Cycle Capstan Motor Assembly
15-30 IPS 50 Cycle Capstan Motor Assy.
Tape Transport Head Cover Door Assy.

83-3310-1135 189
83-3320-1677 190
83-5990-0474 191
83-5990-0475 192
83-5990-0580 193
83-4560-0090 194
83-4930-1496 195
83-4550-5402 196
83-4560-0092 197
83-5990-0556 198
83-4560-0149 199
83-4560-0150 200
83-4560-0151 201
83-4560-0158 202
83-4560-0159 203
83-4330-0241 204

Table 1l. Parts List Index (Cont'd)
Part No.
Description
Catalog No. Page No.

Tape Transport Head Cover, Door Assembly
83-4330-0271 205
Right Hand Actuating Idler Arm Assembly
Left Hand Actuating Idler Arm Assembly
83-4210-0232
206
1/2" Tape Transport Capstan Assembly
83-4210-0256
207
83-5920-0819
Tape Transport Capstan Assembly
Capstan Drive Motor Mounting Bracket Assy
83-5920-0833
209
30-60 IPS Capstan Motor Assembly
83-4320-1476 210
60-120 IPS Capstan Motor Assembly
83-4560-0152 211
Transport Electronics Power Supply Assy
Edit Switch Assembly Kit
Vernier Speed Adjust Bracket Assembly
All Versions Tape Deck Assembly
Transport Distribution Panel Assembly
Transport Distribution Panel Assembly
Transport Tape Lifter Arm Assembly
Tape Lifter Arm Assembly, l" Tape
Harness Assembly, Tape Transport
Bias Osc. and Logic Circuit Board Assy
Incoming Sensor Printed Circuit Board Assy
Printed Circuit Board Assembly, Outgoing
Tape Sensor
Chassis Assembly, Transport Wrap Around
Left Hand Roller Idler Arm Assembly
Right Hand Roller Idler Arm Assembly
Head Cover Door Actuator Arm Assembly
Tape Guide Assembly, Preplay
Preplay Tape Guide Assembly, 1/2"
Preplay Tape Guide Assembly, $1^{\prime \prime}$
Reel Hub Assembly, 1/4" Tape
Capstan Area Parts Kit, 1/2"
Capstan Area Parts Kit, 1"
Capstan Tape Guide Kit, 1/2'', 1/4'"
Capstan Tape Guide Kit, 1/2'", 1/2"
Capstan Tape Guide Kit, 1"
Capstan Tape Guide Kit, 1/4', $1^{\prime \prime}$
Capstan Tape Guide Kit, 1/2'", 1"
Speed Kit, 3 3/4-71/2 IPS
Speed Kit, $71 / 2$ - 15 IPS
Speed Kit, 50 Cycle 7 l/2-15 IPS
Speed Kit, 15-30 IPS
Speed Kit, 50 Cycle 15-30 IPS
Speed Kit, 30-60 IPS
Speed Kit, 60-120 IPS

83-5920-0820 213
83-5990-0839 214
83-4930-1002 215
83-5920-1344 216
83-4930-1003 217
83-4930-1685 218
83-4210-0206 219
83-4210-0242 220
83-4570-0459 221
83-4930-1716 223
83-4930-1046 225
83-4930-1691 226
83-5920-1332 227
83-4210-0230 228
83-4210-0231 229
83-4210-0237 230
83-3240-0440 231
83-3240-0442 232
83-3240-0443 233
83-4930-1884 234
83-5990-0426 235
83-5990-0427 236
83-5990-0428 237
83-5990-0429 238
83-5990-0558 239
83-5990-0431 240
83-5990-0432 241
83-5990-0559 242
83-5990-0560 243
83-5990-0582 244
83-5990-0561 245
83-5990-0581 246
83-5990-0562 247
83-5990-0563 248

Table 11. Parts List Index (Cont'd)
Part No.
Description
Catalog No. Page No.
23013A970
$23013 A 986$
23013 B 990
23017 A 000
23017 A 010
23017 A 100
23028 A 020
23028 A 050
23028 A 055
23028 A 060
23028 A 065
23028 A 070
23028 A 075
23028 A 080
23028 A 085
23028 A 090
23028 A 250
23028 A 350
23059 A 010
23059 A 020
23059 A 030
23059 B 040
23059 A 050

23059A055
23059A060
23059B090-1
23059B090-2
23059A110
23059A130
23059A140
23059A170

Brake Kit, High Speed Capstan
83-5990-0438
249
1/4" Cine Reel Hub Base
Tape Deck Common Parts Kit
Optional Remote Control Assembly
Cable Assembly, Remote Control External
Sync Remote Control Assembly
Basic Cabinet Console Assembly
Cable Assembly, 36" 4 Track Power
Cable Assembly, 66" 4 Track Power
Cable Assembly, 36" 8 Track Power
Cable Assembly, 66" 8 Track Power
Meter Display Assembly, 4 Bay
Harness Assembly, Remote Meter
Housing Assembly, 4 Track Signal Electronics
Cover Assembly, Display Panel
83-3240-0455 250
83-5990-0564 251
83-5920-0823 256
83-4570-0428 259
83-5920-1493 260
83-4310-0998 262
83-4570-0346 263
83-4570-0380 264
83-4570-0347 265
83-4570-0381 266
83-5920-1126 267
83-4570-0387 268
83-4310-1000 269
Housing Assembly, 2 Track Signal Electronics
Cable Assembly, Reproducer Power
83-3310-1157 270
83-4310-0999 271
83-4570-0420 272
Cable Assembly, Film Sync Power
83-4570-0466 273
83-5920-0842 274
83-4930-1121 281
Bias Erase Printed Circuit Board Assy
83-4930-1117 283
Assembly
NAB Record Printed Circuit Board Assy
83-4930-1214 284
Signal Electronics Power Supply Assembly
83-5920-0822 286
W/Meter
Signal Electronics Power Supply Printed
83-4930-1014
289
Circuit Board Assembly
Signal Electronics Line Amplifier Printed
83-4930-1091 290
Circuit Board Assembly
Overdub Preamplifier Printed Circuit
Board Assembly
Overdub Preamplifier Printed Circuit Board Assembly
Extender Printed Circuit Board Assembly
83-4930-1746 295
Record Dynatrack Printed Circuit Board
83-4930-1006
296
Assembly
Reproduce Dynatrack Printed Circuit
83-4930-1964
298
Board Assembly
Reproduce NAB Preamplifier Printed
83-4930-1940
301

Part No.	Description	Catalog No.	Page No.
23059A210-2	8 Track Reproduce Only Signal Electronics Housing	83-5920-1261	302
23059A330	Record Film Sync Printed Circuit Board Assembly	83-4930-1711	307
23059A390	Reproduce Film Sync Printed Circuit Board Assembly	83-4930-1712	308
23059A920	NAB to Dynatrack Printed Circuit Board Kit	83-5990-0425	310
23059A950	Signal Electronics Film Sync Kit	83-5990-0541	311
23059A960-2	NAB Reproduce Signal Electronics Kit, 8 Track	83-5990-0567	312

REF. DES. OR FIND NU. DRAWING NUMBER

- MFGR PART NO.

23000A940	A	MINCOM
23000 A970	C	MINCOM
23028A100-1		MINCOM
23028A100-2	B	M INCOM
23028A046		MINCOM
23028 A020	E	MINCOM
23028 A090	C	MINCOM
23028 A080	C	MINCOM
23028A070	D	MINCOM
23000 A902	C	MINCOM
23059 AOOO	C	MINCOM
230594920	B	MINCOM
23059A170	B	MINCOM
23059A950	B	MINCOM
23059A960-1	B	MINCOM
23059A960-2	B	M INCOM
23059A140	C	MINCOM
B $\times 28 \mathrm{~N} 2.5-2$		ACDC ELECT
23028A050	B	MINCOM
23028 A060	C	MINCOM
23028A055	B	MINCOM
230284065	B	M INCOM
23000 A015		MINCOM
23000A010-1		MINCOM
23000A010-2		MINCOM
23000A010-3		M INCOM
23000A010-4		M I NCOM
23000A010-8		M INCOM
23000A960-1	B	MINCOM
23000A960-2	B	MINCOM
23000B020-1	C	MINCOM
23000B020-2	C	MINCOM
23000B020-5	C	MINCOM
23000B020-3	C	MINCOM
23000B020-4	C	MINCOM
23000B020-7	C	MINCOM
23000B020-9	C	MINCOM
23000A040-1	C	M INCOM
23000A040-2	C	MINCOM
230174000	B	MINCOM
230174010	A	MINCOM
23000 A950	D	MINCOM

KIT-COVER \& TRIM, NARROW KIT-TILTING, TRANSPORT
CASE ASSY-CARRYING, 3 TK MOD 23 CASE ASSY-CARRYING, 4 TK ELECT PANEL-BLANK, CARINET,5.218 WD CONSOLE ASSY-CAR, BASIC HOUSING ASSY-SIGNAL ELEC, 2 TRK HOUSING ASSY-SIGNAL ELEC 4TRK DISPLAY ASSY-METER, 4 BAY KIT-INSTALLATION, MTG, ELECT SIG ELEC ASSY-MOD 23,NAB KIT-P.C.BD, NAB TO DYNATRACK P.C.BD ASSY-PREAMP,NAB,REPRO KIT-FILM SYNC, SIG ELEC KIT-NAB REPRO, SIG ELEC, 4 TRK KIT-NAB REPRO, SIG ELEC, 4 TRK
KIT-NAB REPRO,SIG ELEC, 8 TRK KIT-NAB REPRO,SIG ELEC, 8 TR
P.C.BD ASSY-DYNATRACK,REPRO POWER SUPPLY-28VOLTS 2.5 AMPS
CABLE ASSY-PWR,4TRK, 36 IN
CABLE ASSY-PWR, 8 TRK, 36 IN CABLE ASSY-PWR, 4 TRK, 66 IN CABLE ASSY-PWR, 8 TRK, 66 CARLE ASSY-INTERCONN,HDS CABLE ASSY-INTERCONN,HD, 1 TRK CABLE ASSY-INTERCONN,HDS, 2 TRK CABLE ASSY-INTERCONN,HDS, 3 TRK CABLE ASSY-INTEKCONN,HDS, 4 TRK CABLE ASSY-INTERCONN,HDS, 8 TRK KIT-HD MTG PLATE/CONN, $1 / 2$ IN KIT-HD MTG PLATE/CONN, 1 IN HD SET ASSY-REC/REP/ERASE, 1 TK HD SET ASSY-REC/REP/ERASE, 2 TK HD SET ASSY-REC/REP/ERASE, 2 TK HD SET ASSY-REC/REP/ERASE, 3 TK HD SET ASSY-REC/REP/ERASE,4 TK HD SET ASSY-REC/REP/ERASE,4 TK HD SET ASSY-REC/REP/ERASE, 8 TK HD-MTG ASSY 4TK REP ONLY HD-MTG ASSY 8TK REP ONLY CONTROL ASSY-REMOTE,OPTIONAL CABLE ASSY-EXT,REMOTE CONTROL SW ASSY-TAPE EDITING,FT OPER

TITLE TAPE RECORDER ASSY-PROF AUDIO CATALOG NO. 83-5990-0565

REF. DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.		MFGR NAME	DESCRIPTION	PH	CATALOG NO.	QTY.
75	23013A122-1	A	MINCOM	COVER-TAPE DECK, 10 1/2 REEL		83-3310-1137	AR
76	23013A122-2	A	MINCOM	COVER-TAPE DECK,12 REEL		83-3310-1138	AR
77	23013 A121	A	MINCOM	COVER-TAPE DECK, PORTABLE		83-3310-1139	AR
78	23013A120-1	A	MINCOM	COVER-IDLER,PREPLAY,1/4E1/2 IN		83-3310-1131	AR
79	23013A120-2	A	MINCOM	COVER-10LER, PREPLAY, 1.00 INCH		83-3310-1156	AR
80	23000A900-1	8	MINCOM	KIT ACCESSORY,PREPLAY HEAD		83-5990-0267	AR
81	23000A900-2	B	MINCOM	KIT-ACCESS,PREPLAY HD, 2 TRKI/4		83-5990-0568	AR
82	23059A960-2	B	MINCOM	KIT-NAB REPRO,SIG ELEC, 8 TRK		83-5990-0567	AR
83	23000A900-4	B	MINCOM	KIT-ACCESS, PREPLAY HD, 3 TRK1/2		83-5990-0570	AR
84	23000A900-5	8	MINCOM	KIT-ACCESS, PREPLAY HD, 4 TRK1/2		83-5990-0571	AR
85	23000A900-6	B	MINCOM	KIT-ACCESS, PREPLAY HD, 4 TRK 1		83-5990-0572	AR
86	23000A900-7	B	MINCOM	KIT-ACCESS,PREPLAY HD, 8 TRK 1		83-5990-0573	AR
100	230138000	D	MINCOM	TAPE DECK ASSY-ALL VERSIONS		83-5920-1344	AR
101	23013A986	A	MINCOM	BASE-REEL HUB,1/4 CINE TOP HAT		83-3240-0455	AR
102	230134901	A	MINCOM	KIT-AUTO REWIND OR STOP, SENSOR		83-5990-0669	AR
103	23017A100	B	MINCOM	CONTROL ASSY-REMOTE, SYNC		83-5920-1493	AR
104	23017 Al10	A	MINCOM	CABLE ASSY-ADAPTER REMOTE SYNC		83-4570-0585	AR
105	23059A905	A	MINCOM	KIT-REMOTE SYNC,SIGNAL ELECT		83-5990-0714	AR
106	23013A700	A	MINCOM	TAPE DECK ASSY-MOD 23,150 MIL		83-5920-1587	AR
107	23010A910	A	MINCOM	KIT-EDIT, SWITCH ASSY		83-5990-0839	AR
108	23004990		MINCOM	KIT-ACCESS, BASIC, MODEL 23		83-5990-0868	1.0

TITLE CABLE ASSY-INTERCONN,HDS, 8 TRK
CATALQG NO. 83-4570-0386

REF. DES. OR FIND NO.

RAC
23000401
00000A499-57
23000AO15
NATL WIRE
BURNDY

SPLICE-ELECTRICAL CONDUCTOR

83-1610-0817 1.0
83-1610-0818 2.0 83-3320-1468 2.0
$\begin{array}{rr}83-4570-0345 & 8.0\end{array}$
83-7910-0044 AR
83-9630-0470 2.0

TITLE CABLE ASSY-INTERCONN,HOS
CATALOG NO. 83-4570-0345

REF. DES. OR FIND NO.

DRAWING NUMBER - MFGR PART NO.

3106A10SL-3S
100-2022S
AN-3057-4
NB1934N2S J
202-3932
RA853
GSB134C
GSB134C
GSC194C
CONN-PLUG,ELEC,STR, 3 SOC
SOCKET-CON,CONN,. 766 LG, 22 GA AMPHENOL CLAMP-ELEC,STRAIN RELIEF,10,12 AMPHENOL
NATL WIRE
NATL WIRE
WIRE-TYPE B,22GA BLK NYLUN JKT WIRE-TYPE B,22GA BLK NYLON JKT
WIRE-TYPE B,22GA RED/BLU 2 CON MICRODOT WIRE-SHIELDED, TWIST. PAIR
THOMS \& BETS TERM-LUG, INSUL,R TG,.26WD
THOM \& BETTS FERRULE-RF CABLE GND .1341D
THOMASEBETTS FERRULE-RF CABLE GROUNDING
Ph CATALOG NO. oty.

1
2
3
4
5
6
7
8
9

TITLE CABLE ASSY-HD,REPRODUCE,4 TRK CATALOG NO. 83-4570-0389

REF. DES. OR FIND NO.

1

2
3
3
4
5
6
7
8
9
10
11

REQ U I R E MENTTS--
DRAWING NUMBER

- MFGR PART NO.

3106 A10SL-3S
MRAC-25-G7
100-2022S
AN-3057-4
230004011 00000A499-57

202-3932
RA853
GSB134C
GSC194C

MFGR NAME D E S C R I P T I O N

CANNON
WINCHESTER
WINCHESTER AMPHENOL
B MINCOM
LLUYD WEST
NATL WIRE MICRODOT
THOMS \& BETS
THOM \& BETTS
THOM \& BETT
THOMAS\&BETT
CONN-PLUG, ELEC,STR, 3 SOC
CONN-RECP,RECTANGLR,42 CON
SOCKET-CON,CONN,. 766 LG, 22 GA CLAMP-ELEC, STRAIN RELIEF, 10,12 BRKT MTG-HEAD CONNECTOR
MARKER-IDENT, CABLE, UNMARKED WIRE-TYPE R,22GA RLU NYLON JKT WIRE-SHIELDED, TWIST. PAIR S FERRULE-RF CABLE GROUNDING

PH CATALOG NO. OTY.

83-1610-0595 83-1610-0817 83-1610-0818 83-1650-0127 83-3320-1468 83-3550-1271 83-7910-0044 83-7910-0420 83-9630-0203 83-9690-0020 $\begin{array}{ll}83-9690-0118 & 4.0\end{array}$

TITLE CABLE ASSY－HD，REPRODUCE， 8 TRK
CATALOG NO．83－4570－0390

REF．DES．OR FIND NO．

DRAWING NUMBER MFGR NAME

DESCRIPTION

WIRE－TYPE B，22GA BLU NYLON JKT WIRE－SHIELDED，TWIST．PAIR CONN－PLUG，ELEC，STR， 3 SOC CONN－RECP，RECTANGLR， 42 CON SOCKET－CON，CONN，． 766 LG， 22 GA CLAMP－ELEC，STRAIN RELIEF，10，12 BRKT MTG－HEAD CONNECTOR
C MARKER－IDENT，CABLE，UNMARKED WIRE－TYPE B，22GA BLU NYLON JKT WIRE－SHIELDED，TWIST• PAIR TERM－LUG，INSUL，R TG．． 26 WD FERRULE－RF CABLE GND ． 134 ID FERRULE－RF CABLE GROUNDING

PH CATALOG NO．OTY．

83－7910－0044 03－7910－0420 $\begin{array}{ll}83-7910-0420 & A R \\ 83-1610-0595 & 8.0\end{array}$ 83－1610－0817 1.0 83－1610－0818 16．0 83－1650－0127 8．0 83－3320－1468 2．0 $83-3550-1271 \quad 8.0$ 83－7910－0044 2．0 83－7910－0420 48．0 83－9630－0203 2．0 83－9690－0020 8．0 83－9690－0118 ．
\square
TITLE CABLE ASSY-HEAD, FILM SYNC
CATALOG NO. 83-4570-0465

REF. DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.	MFGR NAME	D E S CRIP T I O N	PH CATALOG NO.	QTY.
J1	MR AC-25-G7	WINCHESTER	CONN-RECP,RECTANGLR, 42 CON	83-1610-0817	1.0
P104, P105, P106, P107, P108	3106A10SL-3S	CANNON	CONN-PLUG,ELEC,STR, . 3 SOC	83-1610-0595	5.0
1	GSB134C	THOM \& BETTS	FERRULE-RF CABLE GND . 134 ID	83-9690-0020	5.0
2	GSC194C	THOMAS\&BETTS	FERRULE-RF CABLE GROUNDING	83-9690-0118	5.0
3	100-2022S	WINCHESTER	SOCKET-CON, CONN,. 766 LG, 22 GA	83-1610-0818	11.0
4	AN-3057-4	AMPHENOL	CLAMP-ELEC, STRAIN RELIEF, 10, 12	83-1650-0127	5.0
5	23000A011 B	MINCOM	BRKT MTG-HEAD CONNECTOR	83-3320-1468	2.0
6	00000A499-57	LLOYD WEST C	MARKER-IDENT, CABLE, UNMARKED	$83-3550-1271$	5.0
7		NATL WIRE	WIRE-TYPE B,22GA RLK NYLON JKT	83-7910-0045	AR
8		NATL WIRE	WIRE-TYPE B,22GA RED NYLON JKT	83-7910-0249	AR
9	NB1934N2SJ	NATL WIRE	WIRE-TYPE B,22GA RED/BLU 2 CON	83-7910-0362	$A R$
10	202-3932	MICRODOT	WIRE-SHIELDED, TWIST. PAIR	83-7910-0420	AR
11	RA853	THOMS \& BETS	TERM-LUG, INSUL,R TG, 26 WD	83-9630-0203	3.0
12	TYPE YOE-91	BURNDY	SPLICE-ELECTRICAL CONDUCTOR	83-9630-0470	1.0
13	3025-070-5/16ID	3M	TUBING-SCOTCHTITE,CLEAR VINYL	83-7910-0279	AR

REF. DES. OR FIND NO. 2
3
4
5
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

DRAWING NUMBER - MFGR PART NO.

23013A113-1		M INCOM	DOOR-PREPLAY HD	83-3330-0339	1.0
23013 A118		MINCOM	SUPPURT-DOOR, PREPLAY	83-3340-0592	1.0
23013 A115		M INCOM	SHAFT-HINGE, PREPLAY	83-3280-0610	1.0
23013 A116		MINCOM	SPACER-AZMUTH ADJ, PREPLAY	83-3350-0535	1.0
23013 A114		M INCOM	SUPPORT-COVER, PRE PLAY	83-3340-0591	2.0
$23013 A 112$		MINCOM	COVER-DECORAIVE, PREPLAY	83-3310-1129	1.0
23013A119-1	A	MINCOM	SHIELD-HEAD, PREPLAY, 1.25 LG	83-3650-0475	1.0
23002A003-2	B	MINCOM	SHOE-HEAD, REPRODUCE	83-3950-1103	1.0
23002A200-1	C	MINCOM	HD-ASSY 1TK REP AUDIO 1/4 IN	83-5950-0994	1.0
23000A905	A	MINCOM	MOUNT ASSY-REPRDDUCE HD, PREPLY	83-4320-1751	1.0
23013A125-1	A	MINCOM	TAPE GUIDE ASSY-PREPLAY	83-3240-0440	1.0
MS 35190-222		MIL STD	SCREW-MACH,FH,4-40 X 5/16	83-9260-6503	2.0
MS24693-S2		MIL STD	SCREW-MACH,FH,4-40 X 1/4	83-9260-6554	2.0
MS 35206-227		MIL STD	SCREW-MACH,PAN HD,6-32 X 5/16	83-9260-4530	2. 0
MS35-07-263		MIL STD	SCREW-MACH, PAN HD, 10-32 $\times 1 / 2$ WASHER-FLAT,GENERAL PURPSE, $\# 10$	$\begin{aligned} & 83-9260-4572 \\ & 83-9261-4006 \end{aligned}$	1.0 2.0
MS35-207-260		MIL STD	SCREW-MACH,PAN HD, 10-32 $\times 5 / 16$	83-9260-4569	1.0
MS 35206-204		MIL STO	SCREW-MACH,PAN HD, 2-56 $\times 5 / 16$	83-9260-4503	2.0
MS35-06-213		MIL STD	SCREW-MACH,PAN HD,4-40 X 1/4	83-9260-4513	2.0
			WASHER-FLAT, SMi PATT, \#2	83-9261-4011	4.0
			WASHER-FLAT,GENERAL PURPOSE,\#6	83-9261-4004	2.0
MS 35338-41		MIL STD	WASHER-LOCK, SPLIT, \#6	83-9261-4305	2.0
MS35338-39		MIL STD	WA SHER-LOCK, SPLIT,HELICAL, \#2	83-9261-4301	2.0
MS 35338-40		MIL STD	WASHER-LOCK, SPLIT,HELICAL,\#4	83-9261-4303	2.0
			WASHER-FLAT, RD, . 125 I. D.	83-9261-4062	2.0
MS 35338-43		MIL STD	WASHER-LOCK, SPLIT,HELICAL, \#10	83-9261-4307	1.0
23002 A002		MINCOM	SHIELD-BASE, HEAD, REPRODUCE	83-3950-1104	1.0

TITLE KIT-ACCESS,PREPLAY HD, 2 TRK1/4
CATALOG NO. 83-5990-0568

REF. DFS. OR FIND NO. 2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DRAWING NUMBER MFGR NAME
D E S CRIP T I O N - MFGR PART NO.

23013A113-1 23013 A118 23013 A115 23013 Al16 23013A114 23013 A112 23013A119-1 23002A003-2 23002A200-2 23000A905 23013A125-1 MS35190-222 MS24693-S2 MS35206-227 MS 35207-263

MS 35207-260 MS35206-204 MS 35206-213

MS35338-41
MS 35338-39 MS35338-40

MS35 338-43 23002 A002

MINCOM
MINCOM MINCOM MINCOM MINCOM
MINCOM
A MINCOM
B MINCOM
C MINCOM
A MINCOM
A MINCOM
MIL STD
MIL STD MIL STD MIL STD

MIL ST
MIL STD
MIL STD

MIL STD
MIL STD
MIL STD
MIL STD MINCOM

DOOR-PREPLAY HD
SUPPORT-DOOR, PREPLAY
SHAFT-HINGE, PREPLAY SPACER-AZMUTH ADJ, PREPLAY SUPPORT-COVER, PRE PLAY COVER-DECORAIVE, PREPLAY SHIELD-HEAD, PREPLAY, 1.25 LG SHOE-HEAD, REPRODUCE HD-ASSY 2TK REP AUDIC $1 / 4$ IN MOUNT ASSY-REPRODUCE HD,PREPLY TAPE GUIDE ASSY-PREPLAY SCREW-MACH,FH,4-40 $\times 5 / 16$ SCREW-MACH,FH,4-40 $\times 1 / 4$ SCREW-MACH,PAN HD,6-32 X 5/16 SCREW-MACH,PAN HD,10-32 X $1 / 2$ WASHER-FLAT,GENERAL PURPSE, \#10 SCREW-MACH, PAN HD, 10-32 $\times 5 / 16$ SCREW-MACH,PAN HD, 2-56 $\times 5 / 16$ SCREW-MACH,PAN HD,4-40 X $1 / .4$ WASHER-FLAT,SM PATT,\#2 WASHER-FLAT,GENERAL PURPOSE,\#6 WASHER-LDCK, SPLIT, \#6 WASHER-LOCK, SPLIT,HELICAL,\#2 WA SHER-LOCK, SPLIT,HELICAL, \#4 WASHER-FLAT,RD,. 125 I.D. WASHER-LOCK, SPLIT,HELICAL,\#10 SHIELD-BASE, HEAD, REPRODUCE

PH CATALOG NO.
OTY.

83-3330-0339 1.0 83-3340-0592 1.0 83-3280-0610 1.0 83-3350-0535 1.0 83-3340-0591 2.0 83-3310-1129 1.0 83-3650-0475 1.0 83-3950-1103 1.0 83-5950-0999 1.0 83-4320-1751 1.0 83-3240-0440 1.0 83-9260-6503 2.0 83-9260-6554 2.0 83-9260-4530 2.0 83-9260-4572 1.0 83-9261-4006 2.0 83-9260-4569 1.0 $83-9260-45032.0$ 83-9260-4513 2.0 83-9261-4011 2.0 83-9261-4004 2.0 83-9261-4305 2.0 83-9261-4301 2.0 $83-9261-43032.0$ $\begin{array}{ll}83-9261-4062 & 2.0 \\ 83-9261-4307 & 1.0\end{array}$ $\begin{array}{rr}83-9261-4307 & 1.0 \\ 33-3950-1104 & 1.0\end{array}$

TITLE KIT-ACCESS,PREPLAY HD,2 TRK1/2 CATALOG NO. 83-5990-0569

REF. DES. OR FIND NO.	DRAWING NUM - MFGR PART		MFGR NAME	DESCRIPTION	Ph CATALOG NO.	QTY.
2	23013A113-1		MINCOM	DOOR -PREPLAY HD	83-3330-0339	1.0
3	230134118		MINCOM	SUPPORT-DOOR, PREPLAY	83-3340-0592	1.0
4	23013 A115		MINCOM	SHAFT-HINGE, PREPLAY	83-3280-0610	1.0
5	230134116		MINCCIM	SPACER-AZMUTH ADJ, PREPLAY	83-3350-0535	1.0
6	23013 A114		MINCOM	SUPPORT-COVER, PRE PLAY	83-3340-0591	2.0
7	23013 A112		MINCOM	COVER-DECORAIVE,PREPLAY	83-3310-1129	1.0
8	23013A119-1	A	MINCOM	SHIELD-HEAD,PREPLAY, 1.25 LG	83-3650-0475	1.0
9	23002A003-2	B	MINCOM	SHOE-HEAD, REPRODUCE	83-3950-1103	1.0
10	23002A200-5	C	MINCOM	HD-ASSY 2TK REP AUDIO $1 / 2$ IN	83-5950-1008	1.0
11	23000A905	A	MINCOM	MOUNT ASSY-REPRODUCE HD, PREPLY	83-4320-1751	1.0
12	23013A125-2	A	MINCOM	TAPE GUIDE ASSY-PREPLAY,1/2 IN	83-3240-0442	1.0
16	MS 35190-222		MIL STD	SCREW-MACH,FH,4-40 X 5/16	83-9260-6503	2.0
17	MS24693-S2		MIL STD	SCREW-MACH,FH,4-40 $\times 1 / 4$	83-9260-6554	2.0
18	MS 35206-227		MIL STD	SCREW-MACH,PAN HD,6-32 \times 5/16	83-9260-4530	2.0
19	MS35207-263		MIL STD	SCREW-MACH,PAN HD, 10-32 X 1/2	83-9260-4572	1.0
20				WASHER-FLAT,GENERAL PURPSE, \#10	83-9261-4006	2.0
21	MS35207-260		MIL STD	SCREW-MACH,PAN HD, 10-32 X 5/16	83-9260-4569	1.0
22	MS 35206-204		MIL STD	SCREW-MACH, PAN HD, 2-56 $\times 5 / 16$	83-9260-4503	2.0
23	MS35206-213		MIL STD	SCREW-MACH,PAN HD,4-40 X 1/4	83-9260-4513	2.0
24				WASHER-FLAT, SM PATT,\#2	83-9261-4011	4.0
25				WASHER-FLAT, GENERAL PURPOSE,\#6	83-9261-4004	2.0
26	MS 35338-41		MIL STD	WASHER-LOCK, SPLIT, \#6	83-9261-4305	2.0
27	MS35338-39		MIL STO	WASHER-LOCK, SPLIT, HELICAL, \#2	83-9261-4301	2.0
28	MS 35338-40		MIL STD	WASHER-LOCK, SPLIT, HELICAL,\#4	83-9261-4303	2.0
29				WASHER-FLAT,RD,. 125 I.D.	83-9261-4062	2.0
30	MS 35338-43		MIL STD	WASHER-LOCK, SPLIT,HELICAL, \#10	83-9261-4307	1.0
31	23002A00?		MINCOM	SHIELD-BASE, HEAD, REPRODUCE	83-3950-1104	1.0

TITLE KIT-ACCESS,PREPLAY HD,3 TRK1/2
CATALOG NO. 83-5990-0570

REF. DES. OR FIND NO.
DRAWING NUMBER

- MFGR PART NO.

$23013 A 113-1$	MINCOM
$23013 A 118$	MINCOM
$23013 A 115$	MINCOM
$23013 A 116$	MINCOM
$23013 A 114$	MINCOM
$23013 A 112$	MINCOM
$23013 A 119-1$	A MINCOM
$23002 A 003-2$	B MINCOM
$23002 A 200-3$	C MINCOM
$23000 A 905$	A MINCOM
$23013 A 125-2$	A MINCOM
MS35190-222	MIL STD
MS24693-S2	MIL STD
MS35206-227	MIL STD
MS $35207-263$	MIL STD
MS 35207-260	MIL STD
MS35206-204	MIL STD
MS $35206-213$	MIL STD
MS35338-41	MIL STD
MS $35338-39$	MIL STD
MS35338-40	MIL STD
MS35338-43	MIL STD
23002A002	MINCOM

230024002
MIL STD MINCOM

2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

3
4
5

TITLE KIT-ACCESS,PREPLAY HD,4 TRK1/2 CATALOG NO. 83-5990-0571

REF. DES. OR FIND NO.	DRAWING NUMB - MFGR PART		MFGR NAME	DESCRIPTION	Ph Catalog no.	OTY.
2	23013A113-1		M INCOM	DOOR-PREPLAY HD	83-3330-0339	1.0
3	23013A118		MINCOM	SUPPORT-DOOR, PREPLAY	83-3340-0592	1.0
4	23013A115		M INCOM	SHAFT-HINGE, PREPLAY	83-3280-0610	1.0
5	23013A116		MINCOM	SPACER-AZMUTH ADJ, PREPLAY	83-3350-0535	1.0
6	23013 A114		MINCOM	SUPPORT-COVER, PRE PLAY	83-3340-0591	2.0
7	23013A112		MINCOM	COVER-DECORAIVE,PREPLAY	83-3310-1129	1.0
8	23013A119-1	A	MINCOM	SHIELD-HEAD, PREPLAY, 1.25 LG	83-3650-0475	1.0
9	23002A003-2	B	MINCOM	SHOE-HEAD, REPRODUCE	83-3950-1103	1.0
10	23002A200-4	C	MINCOM	HD-ASSY 4 TK REP AUDIO 1/2 IN	83-5950-1001	1.0
11	23000A905	A	MINCOM	MOUNT ASSY-REPRODUCE HD, PREPLY	83-4320-1751	1.0
12	23013A125-2	A	MINCOM	TAPE GUIDE ASSY-PREPLAY,1/2 IN	83-3240-0442	1.0
16	MS 35190-222		MIL STD	SCREW-MACH,FH,4-40 $\times 5 / 16$	83-9260-6503	2.0
17	MS24693-S2		MIL STD	SCREW-MACH,FH,4-40 $\times 1 / 4$	83-9260-6554	2.0
18	MS 35206-227		MIL STD	SCREW-MACH, PAN HD,6-32 \times 5/16	83-9260-4530	2.0
19	MS35207-263		MIL STD	SCREW-MACH,PAN HD, 10-32 $\times 1 / 2$	$83-9260-4572$	1.0
20				WASHER-FLAT,GENERAL PURPSE,\#10	$83-9261-4006$	2.0
21	MS35207-260		MIL STD	SCREW-MACH,PAN HD, 10-32 $\times 5 / 16$	83-9260-4569	1.0
22	MS 35206-204		MIL STD	SCREW-MACH, PAN HD,2-56 \times 5/16	$83-9260-4503$	2.0
23	MS35206-213		MIL STD	SCREW-MACH,PAN HD,4-40 $\times 1 / 4$	83-9260-4513	2.0
24				WASHER-FLAT, SM PATT,\#2	83-9261-4011	4.0
25				WASHER-FLAT, GENFRAL PURPOSE,\#6	83-9261-4004	2.0
26	MS 35338-41		MIL STD	WASHER-LOCK, SPLIT, \#6	83-9261-4305	2.0
27	MS35338-39		MIL STD	WASHER-LOCK, SPLIT, HELICAL, \#2	83-9261-4301	2.0
28	MS 35338-40		MIL STD	WASHER-LOCK, SPLIT, HELICAL, \#4	83-9261-4303	2.0
29				WASHER-FLAT,RD,. 125 I.D.	83-9261-4062	2.0
30	MS 35338-43		MIL STD	WASHER-LOCK, SPLIT, HELICAL,\#10	83-9261-4307	1.0
31	23002A002		MINCOM	SHIELD-BASE, HEAD, REPRODUCE	83-3950-1104	1.0

REF. DFS. OR FIND NO.
DRAWING NUMBER - MFGR PART NO.

23013A113-2

 23013 A1.18 23013 A115 23013 A116 23013 A114 23013 A112 23013A119-2 23002A003-2 23002A 200-7 23000A905 23013A125-3 MS35190-222 MS24693-S2 MS35206-227 MS 35207-263MS 35207-260 MS35206-204 MS 35206-213

MS35338-41
MS 35338-39 MS35338-40

MS35338-43 23002 A002

D MINCOM MINCOM MINCOM M INCOM MINCOM MINCOM
A
B MINCOM
C MINCOM
A MINCOM
A MINCOM
MIL STI
MIL STD
MIL STD
MIL STD
MIL STD
MIL STD
MIL STD

MIL STU
MIL STD
MIL STD

MIL STD
MINCOM

DOOR-PREPLAY HD
SUPPORT-DOOR, PREPLAY SHAFT-HINGE, PREPLAY SPACER-AZMUTH ADJ, PREPLAY SUPPORT-COVER, PRE PLAY COVER-DECORAIVE,PREPLAY SHIELD-HEAD,PREPLAY, 1.75 LG SHOE-HEAD, REPRODUCE HD-ASSY 4 TK REP AUDIO 1 IN MOUNT ASSY-RFPRODUCE HD,PREPLY TAPE GUIDE ASSY-PREPLAY, 1 INCH SCREW-MACH,FH,4-40 X 5/16 SCREW-MACH,FH,4-40 $\times 1 / 4$ SCREW-MACH,PAN HD,6-32 $\times 5 / 16$ SCREW-MACH,PAN HD,10-32 X 1/2 WASHER-FLAT,GENERAL PURPSE, \# 10 SCREW-MACH,PAN HD, 10-32 $\times 5 / 16$ SCREW-MACH,PAN HD, 2-56 X $5 / 16$ SCREW-MACH,PAN HD,4-40 X $1 / 4$ WASHER-FLAT, SM PATT,\#2 WASHER-FLAT,GENERAL PURPOSE,\#6 WASHER-LOCK, SPLIT, \#6 WASHER-LOCK, SPLIT,HELICAL, \#2 WA SHER-LOCK, SPLIT,HELICAL,\#4 WASHER-FLAT,RD,. 125 I.D. WA SHER-LOCK, SPLIT,HELICAL, \#10 SHIELD-BASE, HEAD, REPRODUCE
$\mathrm{PH}^{-} \mathrm{CATALOG} N O$. QTY.

83-3330-0340 83-3340-0592 83-3280-0610 83-3350-0535 83-3340-0591 83-3310-1129 83-3650-0476 83-3950-1103 83-5950-1114 83-4320-1751 83-3240-0443 83-9260-6503 83-9260-6554 83-9260-4530 83-9260-4572 83-9261-4006 83-9260-4569 83-9260-4503 83-9260-4513 83-9261-4011 83-9261-4004 83-9261-4305 83-9261-4301 83-9261-4303 $83-9261-4062 \quad 2.0$ $\begin{array}{ll}83-9261-4307 & 1.0\end{array}$ 83-3950-1104 1.0

TITLE KIT-ACCESS,PREPLAY HO,8 TRK 1 CATALOG NO. 83-5990-0573

REF. DES. OR FIND NO.

DRAWING NUMBER

- MFGR PART Nח.

D MINCOM MINCOM MINCOM MINCOM MINCOM MINCOM

A

B MINCOM C MINCOM A MINCOM A MINCOM MIL STD MIL STU MIL STD MIL STD

MIL STD MIL STD MIL STD

MIL STD
MIL STD MIL STD

MIL STD
MINCOM

DOOR-PREPLAY HD	83-3330-0340	1.0
SUPPORT-DOOR, PREPLAY	83-3340-0592	1.0
SHAFT-HINGE, PRFPLAY	83-3280-0610	1.0
SPACER-AZMUTH ADJ, PREPLAY	83-3350-0535	1.0
SUPPORT-COVER, PRE PLAY	83-3340-0591	2.0
COVER-DECORAIVE, PREPLAY	83-3310-1129	1.0
SHIELD-HEAD, PREPLAY, 1.75 LG	83-3650-0476	1.0
SHOE-HEAD, REPRODUCE	83-3950-1103	1.0
HD-ASSY 8TK REP AUDID 1 IN	83-5950-1116	1.0
MOUNT ASSY-REPRODUCE HD, PREPLY	83-4320-1751	1.0
TAPE GUIDE ASSY-PREPLAY, 1 INCH	83-3240-0443	1.0
SCREW-MACH,FH,4-40 X 5/16	83-9260-6503	2.0
SCREW-MACH,FH, 4-40 $\times 1 / 4$	83-9260-6554	2.0
SCREW-MACH,PAN HD,6-32 X 5/16	83-9260-4530	2.0
SCREW-MACH, PAN HD, 10-32 $\times 1 / 2$	83-9260-4572	1.0
WASHER-FLAT, GENERAL PURPSE,\#10	83-9261-4006	2.0
SCREW-MACH, PAN HD, 10-32 X 5/16	83-9260-4569	1.0
SCREW-MACH, PAN HD, 2-56 $\times 5 / 16$	83-9260-4503	2.0
SCREW-MACH,PAN HD, 4-40 X $1 / 4$	83-9260-4513	2.0
WASHER-FLAT, SM PATT, \#2	83-9261-4011	4.0
WASHER-FLAT, GENERAL PURPOSE,\#6	83-9261-4004	2.0
WASHER-LOCK, SPLIT, \#6	83-9261-4305	2. 0
WASHER-LOCK, SPLIT,HELICAL,\#2	83-9261-4301	2.0
WASHER-LOCK, SPLIT,HELICAL,\#4	83-9261-4303	2.0
WASHER-FLAT,RD, . 125 I.D.	83-9261-4062	2.0
WASHER-LOCK, SPLIT,HELICAL, \#10	83-9261-4307	1.0
SHIELD-BASE, HEAD, REPRODUCE	83-3950-1104	1.0

TITLE KIT-INSTALLATION,MTG,ELECT
CATALOG NO. 83-5990-0416

REF. DES. OR FIND NO.
DRAWING NUMBER MFGR NAME
\qquad PH CATALOG NO. TY. MFG PART NO.

23028A033-1 A MINCOM
23028A033-2 A MINCOM 23028A023 A6732-5-02

MINCOM ESNA

BRKT-MTG, LH, SIGNAL ELECT
BRKT-MTG, RH, SIGNAL ELECT STOP-BAR, DOOR, CABINET, CONSOLE NUT-NON LKG, PL, 10-32
SCREW-WOOD, RD HD,\#6 X 7/8
SCREW-WOOD, RD HD,\#10 X 1.00LG WASHER-FLAT, GENERAL PURPOSE,\#6 WASHER-FLAT,GENERAL PURPSE, \# 10

83-3320-1121 1.0
83-3320-1122 1.0 83-3350-0389 1.0 83-9260-0059 16.0 83-9262-0555 4.0 83-9262-0559 8.0 83-9261-4004 4.0 83-9261-4006 8.0

TITLE MOUNT ASSY－REPRODUCE HD，PREPLY

CATALOG NO．83－4320－1751

REF．DES．OR FIND NO．

1
2
3

URAWING NUMBER －MFGR PART NO．

$23013 A 111$	MINCOM	BASE－MOUNTING－PRE PLAY	$83-3240-0439$	1.0
$23001 A O 12$	C MINCOM	MTG－PLATE REPRO HD AZIMUTH	$83-3950-0962$	1.0
MS35190－222	MIL STD	SCREW－MACH，FH，4－40 X 5／16	$83-9260-6503$	2.0

TITLE KIT-COVER \& TRIM, NARROW
CATALOG NO. 83-5990-0440

REF. DES. OR FIND NO.

251
252
253
254
255
256
25
258

DRAWING NUMBER MFGR NAME \qquad PH CATALOG NO. OTY. - MFGR PART NO.
$23013 A 020$ A MINCOM 23013A023-1 E MINCOM 23013A021 A MINCOM 23013A022-1 D MINCOM 23013A018-1 D MINCOM 23013AO18-2 D MINCOM 23013 A024 MS24693-S24

MINCOM
MINCOM
MIL STD

COVER-SWITCH, TAPE METERING
(20 83-3310-0838 (1/2 IN REEL 20 83-3310-0850 , PLATE-MASKING, SWTCH, TAPE TRANS 20 83-3320-1118 TRIM-SWITCH PANEL,LH,TRANSPORT 20 83-3330-0243 TRIM-SWITCH PANEL, RH, TRANSPORT 20 83-3330-0244 TRIM-CHANNEL,TAPE DECK 20 83-3330-0245 SCREW-MACH,FH,6-32 X.250 100 20 83-9260-6571 10.0

TITLE SW ASSY-TAPE EDITING,FT OPER
CATALOG NO • 83-4550-5298

Figure 46. Tape Editing Switch Assembly

TITLE CHASSIS-SWITCH ASSY, FOOT CATALOG NO. 83-3310-1135

TITLE BRACKET-RELAY

REF. DES. OR FIND NO.

1

DRAWING NUMBER - MFGR PART NO.

CLS-440-2

MFGR NAME
D E S C R I P T I O N

PENN ENGNRNG NUT-CAPTVE,4-40X. 250 OD

PH CATALOG NO. OTY.

83-9264-0004
2.0

TITLE KIT-HD MTG PLATE/CONN,1/2 IN CATALOG NO. 83-5990-0474

REF. DFS. OR FIND NO.

1
 2 3

DRAWING NUMBER MFGR NAME
D ESCRIPTION

CONN-RECP,RECTANGLR,42 CON SOCKET-CON, CONN, 766 LG, 22 GA PIN-CONTACT,CONN,.0400IA X. 766 BRKT MTG-HEAD CONNECTOR MTG PLATE ASSY-REC/REP,1/2 IN

PH CATALOG NO. OTY.

83-1610-0817 1.0 83-1610-0818 21.0 $\begin{array}{rr}83-1610-0918 & 21.0 \\ 83-3320-1468 & 2.0\end{array}$ 83-5950-1236 1.0

REF. DES. OR FIND NO.

1

DRAWING NUMBER

- MFGR PART NO.

MRAC-25-G7 WINCHESTER CONN-RECP,RECTANGLR,42 CON
100-2022S
100-2022P
230004011
23001B010-2

WINCHESTER
WINCHESTER
B MINCOM
MINCOM

SOCKET-CON,CONN,. 766 LG, 22 GA
PIN-CONTACT, CONN,. 040 IIA $\times .766$
BRKT MTG-HEAD CONNECTUR
MTG PLATE ASSY-REC/REP, 1 IN

PH CATALCIG NO. OTY.

83-1610-0817 1.0 83-1610-0818 42.0 83-1610-0918 42.0 83-3320-1468 2.0 83-5950-1237

TITLE KIT-TILTING, TRANSPORT
CATALOG NO. 83-5990-0580

REF. DES. OR FIND NO.
DRAWING NUMBER MFGR NAME - MFGR PART Nח.

$23000 A 901$	D MINCOM
$23028 A 010$	A MINCOM
$23028 A 005$	C MINCOM
$23028 A 044$	A MINCOM
MS 35649-82	MIL STD
MS24693-S51	MIL STO
SEE DESC	AEN STD
\#9	DUCOMMUN
$23028 A 116$	A MINCOM
$23028 A 114$	C MINCOM
$23028 A 115$	A MINCOM
H31U58	HUNTER SPR
MS35207-263	MIL STD
MS24665-2/6	
$23028 A 112$	MINCOM
MS35338-43	MILSTO
AN960-516L	ANSTD
MS35650-102	MIL STO
MS24665-208	MIL STD

KIT-INSTALLATION MTG TRANSPORT HINGE-PIVUT, CABINET, CONSOLE SUPPORT-TRANSPORT, CABINET SPACER-PLATE, TRANSPORT SUP NUT-HEX,PLAIN,8-32 X . 344 WD SCREW-MACH,FH,8-32 X.625 WASHER-LOCK, SPLIT,HELICAL, \#8 WASHER-\#8,ASA R27.2-1958.164R PLATE-MOUNTING, FLANG,3/4 THD SHAFT-SPRING, COUNTER BALANCE WASHER-SPRING, COUNTFR BALANCE SPACER-SPRING, COUNTER BALAMCE SPRING-EXTENSION,.031 THKX 2WD SCREW-MACH,PAN HD, 10-32 X 1/2 WASHER-FLAT,GENERAL PURPSE,\#10 PIN-COTTER,.O78 חIA X 1 1/? LG ARM-SUPPORT, COUNTER RALANCE WA SHER-LOCK, SPLIT,HELICAL, \#10 WASHER-FLAT,LIGHT SERIES, \#5/16 NUT-HEX,PLAIN,10-32 X . 375 WD PIN-COTTER,.078 DIA $X: 500$ LG

PH CATALOG NO. DTY.

83-5990-0415 1.0 83-3270-0560 2.0 83-3340-0500 1.0 83-3350-0474 2.0 83-9260-2006 4.0 83-9260-6563 4.0 83-9261-4306 4.0 83-9261-4005 4.0 83-1320-1705 1.0 83-3280-0614 1.0 83-3261-4350 2.0 83-3350-0541 17.0 83-1280-0616 1.0 83-9260-4572 2.0 83-9261-4006 ?.0 83-7280-0617 2.0 83-3210-0287 1.0 83-9261-4307 2.0 83-9261-4014 1.0 83-9260-2107 2.0 83-7280-0322 1.0

TITLE MOTOR ASSY-TAKE UP REEL
CATALOG NO. 83-4560-0090

REF. DES. OR FIND NO.
1
2
3
4
6
7
8
9
10
11
12
13
14
15
16
17

DRAWING NUMBER - MFGR PART NO.

LFSS-10
60511-4-LP
23004 A004
23004 A 003 23004 BOO 1 23004 A005 23004 BO 10 MS 16997-22 MS24693-S272 MS51017-35

MS 35338-41 23004 A008
\#772
MS 16997-20

MIN PREC BRG BRG-BALL,ANLR,PLAIN, . 625 BORE AMP INC CONTACT-ELEC,PIN, . 084 DIA B MINCOM ADAPTER-REEL HUB,RENIND MOTOR
A MINCOM
B MINCOM
A MINCOM
A MINCOM
MIL STANDARD
MIL STD
MIL STD
MIL STD
A MINCOM
HH SMITH
MIL STD

PLATE-MTG,TAKE UP \& REWND MOT INDICATOR-FLAG, DIRECT SENSOR MOTOR-TAKE UP \& REWIND,REEL P.C. BD ASSY, DIRECTION SENSOR SCREW-CAP,SOC HD,6-32 X 3/4 SCREW-MACH,FH, 10-32 $\times 1 / 2$ SETSCREW-CUP PT, 8-32 $\times 1 / 4$ WASHER-FLAT, GENERAL PURPOSE, \#6 WASHER-LOCK, SPLIT, \#6 MAGNET ASSY-BAR, IRON
NUT-HEX, SM PATT,6-32 X . 250 WD CLAMP-STRAIN, . 188 ID SCREW-CAP,SOC HD,6-32 $\times 1 / 2$ LG

83-1230-0331 1.0 83-1610-0925 4.0 83-3240-0303 1.0 83-3320-1105 1.0 83-3550-5319 1.0 83-3560-0091 1.0 83-4930-1496 1.0 83-9261-2033 1.0 83-9260-6294 4.0 83-9261-0069 3.0 83-9261-4004 AR 83-9261-4305 AR 83-3190-0075 1.0 83-9260-2202 2.0 83-7650-0101 1.0 83-9261-2031 1.0

PARTS LIST
PL 230048010
REV A
TITLE P.C. BD ASSY, DIRECTION SENSOR CATALOG NO. 83-4930-1496

REF. DES. OR FIMD NO.	DRAWING NUMBER - MFGR PART NO.		MFGR NAME	DESCRIPTION	Ph catalog no.	QTY.
S13,S14	MRR-2		HAMLIN	SWITCH-REED, MAGNETIC, 28 V 470 MA	83-1550-5259	2.0
1	230048011	B	MINCOM	P.C. BD-DIRECTION SENSOR	83-3640-1035	1.0
2	60511-4-LP		AMP INC	CONTACT-ELEC,PIN, . 084 DIA	83-1610-0925	3.0
3	1-480277-0		AMP INC	SHELL-CONN,RECT, . 850 WD X. 905	83-1610-0930	1.0
4			autolite	WIRE-TYPE B,22GA WHT NYLON JKT	83-7910-0180	AR

REF. DES. OR FIND NO.

DRAWING NUMBER

- MFGR PART NO.
42C24DC-AX
LITTLE DEVIL
MS 24547-1

52
$J X-40$
34013 A926
34013 A927
MS35 206-215
MS35338-40 MS 35206-241

RA85 3
MS 35206-228
MS35338-41
MS35649-62

MFGR NAMEE S CRIPTIDN
PH CATALOG NO.
OTY.

83-1550-4516
83-9520-5522 1.0
$83-1550-5067 \quad 1.0$
83-1640-1112 1.0

83-1550-5068 1.0 83-3320-1640 1.0 83-3320-1641 1.0 83-9260-4515 2.0 83-9261-4002 2.0 83-9261-4303 2.0 83-9260-4547 2.0 83-9261-4035 2.0 83-9261-4306 2.0 83-9630-0203 1.0 83-9260-4531 2.0 83-9261-4305 2.0 83-9261-4004 2.0 83-9260-2005 2.0

PAR TS LI S T
PL 23004A050
REV R
TITLE MOTOR ASSY-REWIND,REEL

REF. DES. OR FIND NO.

DRAWING NUMRER MFGR NAME - MFGR PART NO.
$60511-4-L P$ AMP INC 1-480276-0 23004A004 23004 A003 $23004 \mathrm{AOO5}$ MS24693-S272 MS51017-35 23013A063-1
7166

AMP INC
AMP INC MINCOM A MIINCOM
A MINCOM MIL STD MIL STD M MINCOM
walsco

CATALOG NO. 83-4560-0092
E QU

OESCRIPTION

CONTACT-ELEC,PIN, . 084 DIA 83-1610-0925 4.0 SHELL-CONN,RECT, . 665 WD X. 850 ADAPTER-REEL HUB,REININD MOTOR PLATE-MTG,TAKE UP \& REWND MDT MOTOR-TAKE UP \& REWIND,REEL SCREW-MACH,FH, 10-32 $\times 1 / 2$ SETSCREW-CUP PT,8-32 x $1 / 4$ SPG-EXPAN,RET,CAPSTAN,1.810 LG TERM-LUG, UNINS,FLAT,\#6
ph catalog no.
OTY.

83-1610-0925 4.0 $\begin{array}{ll}83-1610-0929 & 1.0 \\ 83-3240-0303 & 1.0\end{array}$ 83-3320-1105 1.0 83-3560-0091 1.0 83-9260-6294 4.0 83-9261-0069 3.0 83-3280-0524 1.0 83-9630-0028 $\quad 4.0$

TITLE KIT-ASSY-MECHANICAL BRAKE

CATALOG NO. 83-5990-0556

REF. DES. OR FIND NO. 2
3
5
6
7
8
9
10
11
12
13
14
18

DRAWING NUMBER MFGR NAME - MFGR PART NO.

34013A930-3
34013A930-4
2-37-E540-8
23013A063-1
34013 A928
23004 A0 30
23004 A0 20
21-S-094-0437
4318
MS 35206-228
MS 35338-41 197

D MINCOM
D MINCOM PARKER SEAL
A MINCOM MINCOM
B MINCOM
A MINCOM STD PRSD STL PIC MIL STD

MIL STD B IRNBACH।

ARM ASSY-CLUTCH ROLLER, LH
ARM ASSY-CLUTCH ROLLER, RH PKG-PREFORM,O-RING, 2.625 OD SPG-EXPAN,RET,CAPSTAN, 1.810 LG SPACER-ARM, CLUTCH ROLLER ACTUATOR ASSY-BRAKE,FAIL SAFE HUB ISSY-REEL,MOD Oll 23060 STL PIN-SPRING, . 094 DIAX.437LG SCREW-SHOULDER,8-32 $\times 5 / 16$ LG SCREW-MACH,PAN HD,6-32 X 3/8 WASHER-FLAT,GENERAL PURPOSE, \#6 WASHER-LOCK, SPLIT, \#6 LUG-GROUND \#10

PH CATALOG NO.
QTY.

83-3210-0273 1.0
83-3210-0274 1.0
83-1290-0063 2.0 83-3280-0524 2.0 83-3350-0523 2.0 83-4550-5402 1.0 $\begin{array}{ll}83-4930-1756 & 2.0\end{array}$ 83-7280-0223 1.0 83-9260-0030 2.0 83-9260-4531 2.0 83-9261-4004 1.0 83-9261-4305 2.0 83-9630-0061 2.0

TITLE MOTOR ASSY-CAPSTAN,3 3/4-7 1/2
CATALOG NO. 83-4560-0149
$---\infty-\cdots-\cdots-\cdots$
REF. DES. OR FIND NO.
$C 64$

P8
R63

\sim	9
ω	10
0	11
0	12
0	14
\sim	19
\vdots	20
0	21

DRAWING NUMBER MFGR NAME

DESCRIPTION

CAP-FXD,PLSTC, 2.UF 440 V 10\%
200P1450

1-480277-0

0367
3-36-150E MS 35206-289
NAS620-416
MS 35338-44
2154
23007 A017 MS 35206-261

MS 35338-43
60511-4-LP
6128
230074011
MS 35649-42
MS35338-40

SPRAGUE

AMP INC
OHMITE
SPRAGUE
MIL STANDARD
NAS STD
MIL STD
H.H. SMITH

D MINCOM
MIL STD
MIL STD
AMP INC LERCO
B MINCOM
MIL STD
MIL STU

83-1510-4433 1.0
PH CATALOG NO. OTY.
83-1510-4433 1.0
$83-1610-0930 \quad 1.0$
83-1520-8306 1.0

83-1320-1116 2.0 83-9260-4583 1.0 83-9261-4043 1.0 83-9261-4309 1.0 83-9630-0046 2.0 $83-9260-4552 \quad 2.0$ $\begin{array}{ll}83-3320-1582 & 1.0 \\ 83-9260-4588 & 3.0\end{array}$ 83-9261-4006 3.0 83-9261-4307 3.0 83-1610-0925 8.0 $\begin{array}{ll}83-9630-0137 & 1.0 \\ 83-3560-0096 & 1.0\end{array}$ 83-9260-2003 1.0 83-9261-4303 1.0 83-9261-4002 1.0

REF. DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.	MFGR NAME	DESCRIPTI O N	PH CATALUG NO.	QTY.
C64	200P1450	SPRAGUE	CAP-FXD,PLSTC, 2.UF 440 V 10\%	$83-1510-4433$	1.0
P8	1-480277-0	AMP INC	SHELL-CONN,RECT, . 850 WD X. 905	83-1610-0930	1.0
R63	0367	OHMITE	RES-ADJ, WW, 75 OHM 25W 10\%	83-1520-8306	1.0
1	3-36-150E	SPRAGUE	BRACKET-CAPACITOR MTG, 750 WD	83-1320-1116	2.0
2	MS35206-289	MIL STANDARD	SCREW-MACH,PAN HD, 1/4-20 X 2.5	83-9260-4583	1.0
3	NAS620-416	NAS STD	WASHER-FLAT, SM PATT, \#1/4	83-9261-4043	1.0
4	MS35338-44	MIL STD	WASHER-LOCK, SPLIT, HELICAL, \#1/4	83-9261-4309	1.0
5	2154	H.H. SMITH	INSULATOR-WASH, FIBER, . 250 ID	83-9630-0046	2.0
6			SCREW-MACH,PAN HD,8-32 $\times 9 / 16$	$83-9260-4552$	2.0
7	23007 A017 D	MINCOM	BRACKET-CAPACITOR MTG	83-3320-1582	1.0
8	MS35206-261	MIL STD	SCR-MACH,PAN HD, 10-24 $\times 3 / 8$ LG	83-9260-4588	3.0
9			WASHER-FLAT,GENERAL PURPSE,\#10	83-9261-4006	3.0
10	MS35338-43	MIL STD	WASHER-LOCK, SPLIT,HELICAL, \#10	83-9261-4307	3.0
11	60511-4-LP	AMP INC	CONTACT-ELEC,PIN, .084 DIA	83-1610-0925	8.0
12	6128	LERCO	TERMINAL-INSUL, . 250 OD, 4-40	83-9630-0137	1.0
13	23007A015-1 E	MINCOM	PULLEY-CAPSTAN DRIVE, . 625 DIA	83-3220-0147	1.0
14	23007 A011 B	MINCOM	MOTOR-CAPSTAN DRIVE, TRANSPORT	83-3560-0096	1.0
15	N5001-31	TRUARC	RING-RETNG, INT, .831 I D	83-7270-0598	1.0
16	MS35206-245	MIL STD	SCREW-MACH,PAN HD, 8-32 $\times 1 / 2$	83-9260-4551	1.0
17	MS 35338-42	MIL STD	WASHER-LOCK, SPLIT, HELICAL, \#8	83-9261-4020	1.0
18	MS27183-7	MIL STI	WASHER-FLAT,RD, \#8, GEN PURPOSE	83-9261-4038	1.0
19	MS 35649-42	MIL STD	NUT-HEX,PLAIN,4-40 X . 250 WD	83-9260-2003	1.0
20	MS35338-40	MIL STD	WASHER-LOCK,SPLIT,HELICAL, \#4	$83-9261-4303$	1.0
21			WASHER-FLAT,GENERAL PURPOSE \#4	83-9261-4002	1.0

TITLE MSITOR ASSY-CAPSTAN,15-30
CATALOG NO. 83-4560-0151

REF.	DFS. OR FINO NO.	DRAWING NUMBER		MFGR NAME	DESCRIPTION	PH	catalog no.	OTY.
C64		200P1450		SPRAGUE	CAP-FXD,PLSTC, 2.UF 440 V 10\%		$83-1510-4433$	1.0
P8		1-480277-0		AMP INC	SHELL-CONN, RECT, . 850 WD X. 905		83-1610-0930	1.0
R63		0367		OHMITE	RES-ADJ, WW, 75 OHM 25W 10\%		83-1520-8306	1.0
	1	3-36-150E		SPRAGUE	BRACKET-CAPACITOR MTG. 750 WD		83-1320-1116	2.0
	2	MS35206-289		MIL STANDARD	SCREW-MACH, PAN HD, 1/4-20 X 2.5		83-9260-4583	1.0
	3	NAS620-416		NAS STD	WASHER-FLAT, SM PATT,\#1/4		83-9261-4043	1.0
	4	MS35338-44		MIL STD	WA SHER-LOCK, SPLIT,HELICAL, \#1/4		83-9261-4309	1.0
	5	2154		H.H. SMITH	INSULATOR-WASH, FIBER,.250 ID		83-9630-0046	2.0
	6				SCREW-MACH, PAN HD, 8-32 $\times 9 / 16$		83-9260-455?	2.0
	7	23007A017	D	MINCOM	BRACKET-CAPACITOR MTG		83-3320-1582	1.0
	8	MS35 206-261		MIL STD	SCR-MACH,PAN HD, 10-24 X 3/8 LG		83-9260-4588	3.0
	9				WASHER-FLAT,GENERAL PURPSE,\#10		83-9261-4006	3.0
	10	MS35338-43		MIL STO	WASHER-LOCK, SPLIT,HELICAL, \#10		83-9261-4307	3.0
	11	60511-4-LP		AMP INC	COMTACT-ELEC,PIN, .084 DIA		83-1610-0925	8.0
	12	6128		LERCO	TERMINAL-INSUL, . 250 rID, 4-40		83-9630-0137	1.0
	13	23007A015-2	E	MINCOM	PULLEY-CAPSTAN DRIVE, 1.250 DIA		83-3220-0148	1.0
	14	23007 A011	B	MINCOM	MOTOR-CAPSTAN ORIVE, TRANSPORT		83-3560-0096	1.0
	15	N5001-31		TRUARC	RING-RETNG, INT, .831 I D		83-7270-0598	1.0
	16	MS35-06-245		MIL STD	SCREW-MACH, PAN HD, 8-32 $\times 1 / 2$		83-9260-4551	1.0
	17	MS 35338-42		MIL STO	WASHER-LOCK, SPLIT,HELICAL, \#8		83-9761-4020	1.0
	18	MS27183-7		MIL STI	WASHER-FLAT,RI), \#R,GEN PURPOSF		83-9261-4038	1.0
	19	MS 35649-42		MIL STD	NUT-HEX,PLAIN,4-40 X . 250 W!D		83-9260-2003	1.0
	20	MS35338-40		MIL STD	WASHER-LOCK, SPLIT,HELICAL, \#4		83-9261-4303	1.0
	21				WASHER-FLAT,GENERAL PURPISE \#4		83-9261-4002	1.0

TITLE MOTOR ASSY-CAPSTAN,50 CYCLE CATALUG NO. 83-4560-0158

REF. DES. OR FIND NO.
DRAWING NUMBER - MFGR PART NO.

C64

TITLE MOTOR ASSY-CAPSTAN, 15-30,50 CY CATALOG NO. 83-4560-0159

REF. DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.	MFGR NAME	D ESCR I P T I O N	PH CATALOG NO.	OTY.
C64	200P1904	SPRAGUE	CAP-FXD,ELEC,5 MF 370VAC 10\%	83-1510-2243	1.0
P8	1-480277-0	AMP INC	SHELL-CONN, RECT, .850 WD X. 905	83-1610-0930	1.0
R63	0367	OHMITE	RES-ADJ, WW, 75 OHM 25W 10\%	83-1520-8306	1.0
1	36-909H	SPRAGUE	BRACKET-CAPACITOR MTG	83-1320-1587	2.0
2	MS35206-289	MIL STANDARD	SCREW-MACH,PAN HD, 1/4-20 X 2.5	83-9260-4583	1.0
3	NAS620-416	NAS STD	WASHER-FLAT, SM PATT, \#1/4	83-9261-4043	1.0
4	MS35338-44	MIL STO	WASHER-LOCK, SPLIT, HELICAL, \#1/4	83-9261-4309	1.0
5	2154	H.H. SMITH	INSULATOR-WASH, FIBFR,. 250 ID	$83-9630-0046$	2.0
6			SCREW-MACH,PAN HD,8-32 $\times 9 / 16$	$83-9260-4552$	2.0
7	230074017 D	M INCOM	BRACKET-CAPACITOR MTG	83-3320-1582	1.0
8	MS35206-261	MIL STD	SCR-MACH,PAN HD, 10-24 $\times 3 / 8$ LG	83-9260-4588	3.0
9			WASHER-FLAT, GENERAL PURPSE, \#1.0	83-9261-4006	3.0
10	MS35338-43	MIL STD	WASHER-LOCK, SPLIT, HELICAL, \#10	83-9261-4307	3.0
11	60511-4-LP	AMP INC	CONTACT-ELEC,PIN, .084 DIA	83-1610-0925	8.0
12	6128	LERCO	TERMINAL-INSUL, . 750 OD, 4-40	83-9630-0137	1.0
13	23007A015-6 E	MINCOM	PULLEY-CAPSTAN DRIVE, 1.503 DIA	83-3220-0191	1.0
14	2102-0W4	ELINCO	MOTOR-CAPSTAN DRIVE,	83-1560-0156	1.0
15	N5001-31	TRUARC	RING-RETNG, INT, .831 I D	83-7270-0598	1.0
16	MS35206-245	MIL STO	SCREW-MACH,PAN HD, 8-32 $\times 1 / 2$	83-9260-4551	1.0
17	MS 35338-42	MIL STD	WASHER-LOCK, SPLIT,HELICAL, \#8	83-9261-4020	1.0
18	MS27183-7	MIL STU	WASHER-FLAT,RD,\#8,GEN PURPOSE	83-9261-4038	1.0
19	MS 35649-42	MIL STD	NUT-HEX,PLAIN, 4-40 X . 250 WD	83-9260-2003	1.0
20	MS35338-40	MIL STD	WASHER-LOCK, SPLIT,HELICAL; \#4	83-9261-4303	1.0
21			WASHER-FLAT,GENFRAL PURPOSE \#4	83-9261-4002	1.0

TITLE DOOR ASSY-HEAD COVER,TPE TRANS

REF. DES. OR FIND NO.

2
3
4
5
6
7

DRAWING NUMRER MFGR NAME - MFGR PART NO.

23007 A032	B MINCOM
23007 B034-1	D MINCOM
23007 AO33	A MINCOM
23007 A036-1	B MINCOM
GP24-125×312	
GROOV-P IN $\# 0$	GROOV-PIN

23007B034-1 D MINCOM
23007 A033
3007A036-1 \#P

DESCRI P T I O N

SHAFT-ACTUATING,DOOR, HEAD COVR DOOR-HEAD COVER, TAPE TRANS SUPPORT-DOOR,HD CVR,TAPE TRANS SHIELD-DOOR, HEAD COVER PIN-GRVD,HDLS,.1250IA X.312 LG PIN-GRVD,HDED, . 067 DIAX. 125 LG

PH CATALOG NO. OTY.

83-3280-0406 83-3330-0263 83-3340-0381 83-3650-0367 83-7280-0466 1.0 83-7280-0466 1.0 83-7280-0477
1.0
1.0
1.0
1.0
1.0
2.0

P A R T S L I S T
PL 23007A030-2
REV C
TITLE DOUR ASSY-HD COVER,TAPE TRANS CATALOG NO. 83-4330-0271

REF. DES. OR FIND NO.

- MFGR PART Nח.

230074032	B	MINCOM
23007B034-2	D	3M
23007 A033	A	MINCOM
23007A036-2	R	MINCOM
GP24-125×312		GROOV-PIN
\#0		RUOV-P

SHAFT-ACTUATING, DOOR, HEAD COVR DOOR-HD COVER,TAPE TRANSPORT SUPPORT-DOOR,HD CVR,TAPE TRANS SHIELD-DOOR, HEAD COVER
PIN-GRVD,HDLS,. 125 IIA X. 312 LG PIN-GRVD, HDED, . 067 DIAX. 125 LG

PH CATALOG NO. OTY.

83-3280-0406 1.0 83-3330-0269 1.0 83-3340-0381 1.0 83-3650-0384 1.0 83-7280-0466 1.0 83-7280-0477 2.0

REF. DES. OR FIND NO.

DRAWING NUMBER - MFGR PART NO.

23007 A05 1 23007 A052 23007 A053
\#5 11
LP22D82P9 MS 27183-7 S-832-2
6593

C MINCOM
B MINCOM
A MINCOM MILFORD LONG LOK
MIL STD PENN ENGR RIRNBACH

ARM-ADJUSTING, IDLER, UPPER ARM-ADJUSTING, IDLER,LOWER SPRING-ADJUSTABLE ARM,IDLER RIVET-SIMI-TUBULAR,. $123 \times .254$ SCR-SELF LKG,PAN HD,8-32×9/16 WASHER-FLAT,RD, \#8,GEN PURPOSE NUT-PLAIN,CLIN,8-32
INSULATOR-WASH, NYLON,.016 TK

PH CATALOG NO. OTY.

$83-3210-0204$	1.0
$83-3210-0205$	1.0
$83-3280-0411$	1.0
$83-9260-0046$	2.0
$83-9262-0529$	1.0
$83-9261-4038$	1.0
$83-9264-2116$	1.0
$83-9630-0272$	2.0

83-3210-0204 83-3210-0205 83-3280-0411 83-9260-0046 83-9262-0529 1.0 83-9264-2116 1.0 83-9630-0272 2.0

REV K
TITLE ARM ASSY－IDLER，ACTUATING，LH
CATALOG NO．83－4210－0256

REF．DES．OR FIND NO．
DRAWING NUMBER MFGR NAME
O E S C R I P T I O N PH CATALOG NO．OTY． －MFGR PART NCI．

23007 AO55	C MINCOM
23007 A052	B MINCOM
23007 AO53	A MINCOM

\＃511
MILFORD

LP 22D82P9
P 22D82P
MS27183－7
S－832－2
6593
LONG LOK
MIL STD

PENN ENGR
BIRNBACH

ARM－ADJUSTING，I DLER，UPPER，INC ARM－ADJUSTING，IDLER，LOWER SPRING－ADJUSTABI．E ARM，IDLER PIN－SPRING，． 093 DIAX．312LG RIVET－SIMI－TUBULAR，． $123 \times .254$ SCR－SELF LKG，PAN HD，8－32X9／16 WASHER－FLAT，RD，$\# 8$ ，GEN PURPOSE NUT－PLAIN，CLIN，8－32 INSULATOR－WASH，NYLON，．016 TK

83－3210－0257 1．0
83－3210－0205 1．0
83－3280－0411 1．0 83－7280－0221 1．0 83－9260－0046 2.0 83－9262－0529 1．0 83－9261－4038 1．0 83－9264－2116 1．0 83－9630－0272 2．0

REF. DES. OR FIND NO.

DRAWING NUMBER		MFGR N
- MFGR PART NO.		
$103 S 3 C G-2$		BARDEN
$103 H D B 5 C G-2$		BARDEN
$23007 A 063-1$	E MINCOM	
$19007 A 022$	D MINCOM	
$23007 A 064-1$	E MINCOM	
$23007 A 062$	D MINCOM	
MS16625-137		MIL STD
000004816		MINCOM
$23007 A 009-1$	R MINCOM	
$23007 A 009-2$	B MINCOM	
$23007 A 009-3$	B MINCOM	

B MINCOM

D E S C R I P T I O N

BRG-BALL,PLAIN,ANLR,. 6693 BORE BRG-BALL,PLAIN, 6693 BORE TAPE DR-CAPSTAN, $1 / 2^{\circ}$ IN TAPF TAPE DR-CAPSTAN, $1 / 2$ IN TAPE
CAP-FLYWHEEL,PRECISION PLATE SHAFT-CAPSTAN,TAPE DRVE, $1 / 2$ IN HOUSING-CAPSTAN, TAPE DRIVE RING-RETNG, INT, 1.486 OD RING-RETNG, INT, 1.526 FREE OP SCR-CAP,FH, $1 / 4 \times 20 \times 5 / 8$, NYLOC SHIM-CAPSTAN,. 002 THK
SHIM-CAPSTAN, . 005 THK SHIM-CAPSTAN, . 010 THK
SHIM-CAPSTAN, . 010 THK

PH CATALUG NO. OTY.

$83-1230-0313$	1.0
$83-1230-0335$	1.0
$83-3240-0292$	1.0
$83-3250-0082$	1.0
$83-3280-0409$	1.0
$83-3310-0836$	1.0
$83-7270-0382$	1.0
$83-3270-0768$	1.0
$83-9262-0569$	1.0
$83-3230-0340$	$A R$
$83-3230-0368$	$A R$
$83-3230-0369$	$A R$

83-3230-0369
$A R$
rmen rat
$\Gamma \times 3$

raver
rant
Γ
下雨雨要

REV F
TITLE CAPSTAN ASSY－TAPE TRANSPORT CATALUG NO．83－5920－0833

REF．DES．OR FIND NO．
1
2
4
5
7
8
9
11
12
13
14
15

DRAWING NUMBER MFGR NAME
－mFGR PART NO．

103 S3CG－2
 10 3HDB5CG－2
 23007A063－2

19007 A0 22
23007A064－2
23007 A062
MS16625－137 00000A816

23007A009－1
23007A009－2
23007A009－3

BARDEN
BARDEN
E MINCOM
D MINCOM
E MINCOM
D MINCOM
MIL STO MINCOM

B MINCOM
B MINCOM
B MINCOM

BRG－BALL，PLAIN，ANLR，． 6693 BORE RG－BALL，PLAIN，．6693 BORE CAPSTAN－TAPE GUIDE， 1 IN TAPE CAP－FLYWHEEL，PRECISION PLATE SHAFT－CAPSTAN， 1 IN TAPE HOUSING－CAPSTAN，TAPE DRIVE RING－RETNG，INT， 1.486 OD RING－RETNG，INT， 1.526 FREE OP SCR－CAP，FH，1／4X20×5／8，NYLOC SHIM－CAPSTAN，． 002 THK SHIM－CAPSTAN，． 005 THK SHIM－CAPSTAN，． 010 THK

PH CATALOG NO．OTY．

83－1230－0313 1．0 83－1230－0335 1．0 83－3240－0297 1．0 83－3250－0082 83－3280－0410 1．0 83－3310－0836 1.0 83－7270－0382 1．0 83－3270－0768 1.0 83－9262－0569 1．0 83－3230－0340 AR 83－3230－0368 AR 83－32．30－0369 AR

TITLE BRKT ASSY-MOTOR MTG,CAPS DRIVE CATALOG NO. 83-4320-1476

REF. DES. OR FIND NO.

DRAWING NUMBER - MFGR PART NO.

SLEEVE-RUBBER,. 625 ID X $1.00 L G$ BUSHING-SPLIT,NOTOR SUPPORT SHAFT-SUPPORT, CAPSTAN MOTOR BRACKET-MTG, CAPSTAN MOTOR SCREW-MACH,PAN HD, 10-32 $\times 1 / 2$ WASHER-FLAT, GENERAL PURPSE, \#10 WASHER-LOCK,SPLIT,HELICAL,\# 10

PH CATALOG NO. OTY.

83-3230-0393 2.0 83-3230-0303 2.0 83-3280-0421 1.0 83-3320-1102 1.0 83-9260-4572 4.0 83-9261-4006 4.0 83-9261-4307 4.0

REF.	DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.		MFGR NAME	D F S CRIP TI ON	PH	CATALOG NO.	QTY.
C64		200P1450		SPRAGUE	CAP-FXD,PLSTC, 2.UF 440V 10\%		83-1510-4433	1.0
P8		1-480277-0		AMP INC	SHELL-CONN,RECT, . 850 WD X. 905		83-1610-0930	1.0
R63		0367		OHNITE	RES-ADJ, WW, 75 OHM 25W 10\%		83-1520-8306	1.0
	1	3-36-150E		SPRAGUE	BRACKET-CAPACITOR MTG, 750 WD		83-1320-1116	2.0
	2	MS35206-289		MIL STANDARD	SCREW-MACH,PAN HD, 1/4-20 X 2.5		83-9260-4583	1.0
	3	NA S620-416		NAS STD	WASHER-FLAT, SM PATT, \#1/4		83-9261-4043	1.0
	4	MS35338-44		MIL STD	WA SHER-LOCK, SPLIT,HELICAL,\#1/4		83-9261-4309	1.0
	5	2154		H.H. SMITH	INSULATOR-WASH, FIBER, . 250 ID		$83-9630-0046$	2.0
	6				SCREW-MACH, PAN HD, 8-32 $\times 9 / 16$		$83-9260-4552$	2.0
	7	23007A017	D	MINCOM	BRACKET-CAPACITOR MTG		83-3320-1582	1.0
	8	MS35207-261		MIL STD	SCREW-MACH, PAN HD, 10-32 X 3/8		83-9260-4570	3.0
	9				WASHER-FLAT, GENERAL PURPSE, \#10		83-9261-4006	3.0
	10	MS35338-43		MIL STD	WASHER-LOCK, SPLIT,HELICAL,\#10		83-9261-4307	3.0
	11	60511-4-LP		AMP INC	CONTACT-ELEC,PIN, .084 DIA		83-1610-0925	8.0
	12	6128		LERCO	TERMINAL-INSUL, . 250 OD, 4-40		83-9630-0137	1.0
	13	230074415	B	MINCOM	PULLEY-CAPSTAN DRIVE, 120 IPS		83-3220-0170	1.0
	14	23007 A011	B	MINCOM	MOTOR-CAPSTAN DRIVE, TRANSPORT		83-3560-0096	1.0
	15	N5001-31		TRUARC	RING-RETNG, INT, 831 I D		83-7270-0598	1.0
	16	MS35 206-245		MIL STD	SCREW-MACH,PAN HD,8-32 $\times 1 / 2$		83-9260-4551	1.0
	17	MS 35338-42		MIL STD	WASHER-LOCK, SPLIT,HELICAL,\#8		83-9261-4020	1.0
	18	MS27183-7		MIL STD	WASHER-FLAT,RD,\#8,GEN PURPOSE		83-9261-4038	1.0
	19	MS 35649-42		MIL STD	NUT-HEX,PLAIN,4-40 X . 250 WD		83-9260-2003	1.0
	20	MS35338-40		MIL STD	WASHER-LOCK, SPLIT, HELICAL, \#4		83-9261-4303	1.0
	21				WASHER-FLAT,GENERAL PURPOSE \#4		83-9261-4002	1.0

TITLE PWR SUP ASSY-TRANSPORT ELECT
CATALOG NO. 83-5920-0820

REF.	DES. OR FIND NO.	DRAWING NUMBER MFGR - MFGR PART NO.			DESCRIPTION	PH	CATALOG NO.	QTY.
C65		CG451T200C1		MALLORY	CAP-FXD,ELECT, 450UF 200 V		83-1510-2205	1.0
C66		CG23U50C1		MALLORY	CAP-FXD,ELECT, 2000UF 50V		83-1510-2206	1.0
F1		313005.		LITTELFUSE	FUSE-SLO-BLO, 125 V 5 AMP		83-7550-8006	1.0
$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} 3 \end{aligned}$		$\begin{aligned} & 160-3 \\ & 200512-3 \end{aligned}$		AMPHENOL AMP INC	CONN-PLUG,ELEC,POWER, 2 PIN SHELL-CONN,RECT,26 POSITIONS		$\begin{aligned} & 83-1610-1107 \\ & 83-1610-0663 \end{aligned}$	1.0 1.0
060		2N174		MOTOROLA	TSTR-GE, PNP, PWR, 80 VCB		83-1530-2001	1.0
T60		23009 A004	A	M INCOM	XMFR-PWR, 48-62 CPS.115V 10\%		83-3540-1141	1.0
	3	342004		LITTELFUSE	FUSEHOLDER-POST, AG 3 FUSE		83-1620-0083	1.0
	4	201924-1		AMP INC	CLIP-SPG TENS,POSITION LOCKING		83-1620-0127	1.0
	6	VR 3		MALLORY	CLAMP-COMP MTG,1.375 DIA		83-1650-0371	2.0
	7	230094007	A	MINCOM	SPRING-LOCKOUT, POWER SUPPLY		83-3280-0464	1.0
	8	23009 A001	B	MINCOM	CHASSIS-TRANSPORT ELECT,MDL 23		83-3310-0830	1.0
	9	230094006	A	MINCOM	BRACKET-LOCKOUT, CAPSTAN MOTOR		83-3320-1168	1.0
	10	200390-4		AMP INC	RECP-GUIDE PIN,CENTER,SERIES M		83-7270-0302	1.0
	11	200389-4		AMP INC	PIN-GUIDE, CENTER,AMP SERIES M		83-7280-0196	1.0
	12				NUT-HEX, SM PATT,6-32 X . 250 WD		83-9260-2202	11.0
	13	MS35 206-228		MIL STD	$\text { SCREW-MACH,PAN HD,6-32 } \times 3 / 8$		83-9260-4531	12.0
	14	MS 35206-230		MIL STD	SCREW-MACH,PAN HD,6-32 $\times 1 / 2$		83-9260-4533	3.0
	17				WASHER-FLAT, GENERAL PURPOSE, \#6		83-9261-4004	1.0
	18				WASHER-FLAT, SM PATT,\#6		83-9261-4013	13.0
	20	MS35338-41		MIL STD	WASHER-LOCK, SPLIT, \#6		83-9261-4305	14.0
	22	\#NCGB 122-37		PIPCO INT	STRIP-GROMMET, $145^{\circ} \mathrm{HT}$ X. 171 WD		83-9630-0008	1.0
	23	$R A 853$		THOMS \& BETS	TERM-LUG, INSUL,R TG,.26WD		83-9630-0203	2.0
	24	4451-C-9		USECO	TERMINAL-FEEDTHRU, . 094 LG		83-9630-0559	1.0
	25	23009 A008	A	M INCOM	STOP-CAPSTAN MOTOR, TRANSPORT		83-3350-0554	1.0
	26	212-42-0183B		PLASTIGLIDE	BUSHING-ELEC COND, INSUL, NYLON		83-9630-0300	1.0
	27	7274633		DELCO	KIT-TSTR MTG		83-1530-2016	1.0

REF.	DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.		MFGR NAME	D E S	C R	I	P	I 0		N			PH	CATALOG NO.		QTY.
DS 14		327		GENERAL ELEC	LAMP-INCANDESCENT, . 04 AMP										83-155	-2506	1.0
S14		1018		PENDAR	SWITCH-PUSHBUTTON, SPDT, LI GHTED										83-155	5148	1.0
	1	SP191A080	C	MINCOM OOT	RELAY	ASS	Y-E	EDIT	SW	WIT	TCH				83-4930	-1908	1.0
	2	SP191A082-2	A	MINCOM	PLATE	-MAS	K, S	SW, ED	IT	T, L	LON				83-3320	-2143	1.0
	3	SP191A083	A	MINCOM	PLATE	-SW I	TCH	H, MTG	,	EDI					83-3320	-2144	1.0
	4	60510-4		AMP INC	CONT	CT-E	LEC	C, SOC	C, 1	18	-22	2GA S	ZE		83-1610	-0927	3.0
	5	23013A038-2	E	MINCOM	LENS-	IND	LIG	GHT, P	US	SHB	BUT	TTON,	DIT		83-3550	-1758	1.0
	6	RAA - 217		THOM \& BETTS	SPLIC	E-CO	NDU	UCTOR	, B	BUT	TT	TYPE			83-9630	-0382	1.0
	7			NATL WIRE	WIRE-	TYPE	B,	, 22GA	W	WHT	T	NYLON	JK T		83-7910	-0043	AR

TITLF RRACKFT ASSY－VFRNIFP SPEFO ADJ

CATALIF MO．\＆3－4930－1002

RFF．DFS．OR F［MD］Mn．
ITRAWIMG NIIMRFR
MFGR NAMF O F S CRIPTIDM PH CATAIRG NO． QTY． －MFGR PART MII．

23012．Ann］
2301 2 Annk 2301．2AOn？ 23017 A003 5555－1． 8

AILHFTAL
MIMCrin
C．MIMC．IM
mincom
M I NC， $1 / i$ TRIIARC．

PIN－STR，HחI．S，． 188 OTAXI．1つ5LG ARM－SPFFO ANJ，CAPSTAN ORIVF LFVFR－SILFMOIN SHAFT，CAPSTAM： PIVOT－SPFFF ADJ，CAPSTAN NRIVF SPRIMF－SPEFN AN．l，CAPSTAN DRIVF RING－RFTNG，FXT，•181．In

8．3－1780－0077 $\quad 7.0$ R3－3ク10－ก199 1．0 83－3フ10－020n l．n $83-2780-0386$ 1．0 83－3780－0387 1．0 R3－7770－0488 4.0

REF. DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.		MFGR NAME	DES CRIP TI O N	PH CATALOG NO.	OTY.
R60	TYPE RH-50		DALE PRODUCT	RES-FXD,WW, 15 OHM, 50W, 5\%	83-1520-7593	AR
R 71	O0000A737	A	MINCOM	RES-FXD, $0-300 \mathrm{~K}$ OHM 1/4W 5\%	83-3520-3276	1.0
R75	1723		OHMITE	RES-FXD, WW, 200 OHM 10W 5\%	83-1520-8006	AR
300	23013 B 990	G	M INCOM	KIT-COMMON PARTS, TAPE DECK	83-5990-0564	1.0
304	230138940	B	M INCOM	KIT-SPEED, 3 3/4-7 1/2 IPS	83-5990-0559	$A R$
306	23013B945-1	C	M INCOM	KIT-SPEED, 7 1/2-15 IPS	83-5990-0560	$A R$
307	23013B945-2	C	MINCOM	KIT-SPEED, 7 1/2-15 IPS,50 CYC	83-5990-0582	$A R$
308	23013B950-1	C	MINCOM	KIT-SPEED, 15-30 IPS	83-5990-0561	$A R$
309	23013B950-2	C	MINCOM	KIT-SPEED, 15-30 IPS, 50 CYCLE	83-5990-0581	ΔR
310	23013 P955	C	MINCOM	KIT-SPEED, 30-60 IPS	83-5990-0562	$A R$
312	230138960	C	MINCOM	KIT-SPEED, 60-120 IPS	83-5990-0563	$A R$
315	23013 A970	D	M INCOM	KIT-BRAKE, CAPSTAN,HIGH SPEED	83-5990-0438	$A R$
321	230134900	C	MINCOM	KIT-CAPSTAN AREA PARTS,1/2 IN	83-5990-0426	$A R$
322	230134905	C	MINCOM	KIT-CAPSTAN AREA PARTS, 1 INCH	83-5990-0427	$A R$
327	230134910	C	MINCOM	KIT-TAPE GUIDE, $1 / 4 \mathrm{IN}, 1 / 2 \mathrm{CAP}$	83-5990-0428	AR
328	23013 A915	C	MINCOM	KIT-TAPE GUIDE, $1 / 2 \mathrm{IN}, 1 / 2 \mathrm{CAP}$	83-5990-0429	$A R$
329	230134930	C	MINCOM	KIT-TAPE GUIDE, $1 / 4 \mathrm{IN}, 1 \mathrm{IN}$ CAP	83-5990-0431	$A R$
330	230134935	C	MINCOM	KIT-TAPE GUIDE, 1/2 IN,1 IN CAP	83-5990-0432	$A R$
331	230138920	D	MINCOM	KIT-TAPE GUIDE, 1 INCH	83-5990-0558	$A R$
332	23004 A900	B	MINCOM	KIT-ASSY-MECHANICAL BRAKE	83-5990-0556	$A R$
333	23013A980-1	A	MINCON	KIT-HUR HOTH,W/O RK, 1/4NABECIN	83-5990-0642	AR
334	$230134980-2$	A	MINCOM	KIT-HUR WDTH, W/O BK, 1/2 NAR	83-5990-0643	$A R$
335	23013A980-3	A	MINCOM	KIT-HUB WDTH,W/O RK, 1 NAB	83-5990-0644	$A R$
336	23013A985-1	A	MINCOM	KIT-HUR WDTH, WITH BK, $1 / 4$ CIN	83-5990-0645	AR
337	23013A985-2	A	MINCOM	KIT-HUB WDTH,WITH BK, 1/4 NAB	83-5990-0646	$A R$
338	23013A985-3	B	M INCOM	KIT-HUR WDTH, WITH BK, 1/2 NAB	83-5990-0647	$A R$
339	23013A985-4	B	MINCOM	KIT-HUB WDTH, IITH BK, 1 NAB	83-5990-0648	$A R$

TITLE PANEL ASSY-DISTRIBUTION,TRANS CATALOG NO. 83-4930-1003

TITLE PANEL ASSY-DISTRIBUTION,TRANS
CATALOG NO. 83-4930-1685

REF.	DFS. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.	MFGR NAME	DESSCRIP T I O N	PH CATALLOG NO.	OTY.
C68		$B R-100-150$	CORNELL DUBL	CAP-FXD,ELECT, 100UF 150 V	$83-1510-2207$	1.0
R68		4592	OHMITE	RES-FXD, WW, 100 OHM 5W 5\%	83-1520-8185	1.0
TB2		3006	H.H. SMITH	TERM BD-2.250 BETWEEN MTG HOLE	83-1640-0588	1.0
	1	MS35338-41	MIL STD	WASHER-LOCK, SPLIT, \#6	83-9261-4305	2.0
	2	230134031 C	MINCOM	PLATE-CONN MTG, DIST PANEL	83-3320-1104	1.0
	3			NUT-HEX, SM PATT,6-32 X . 250 WD	83-9260-2202	2.0
	4	MS 35190-235	MIL STD	SCREW-MACH,FH,6-32 X 5/16	$83-9260-6516$	2.0
	5			WASHER-FLAT, SM PATT,\#6	83-9261-4013	2.0

－喰
PARTSLIST
PL 23013A040－1
REV C

TITLE ARM ASSY－TAPE LIFTER，TRANSPORT
 CATALOG NO．83－4210－0206

REF．DES．OR FIND NO．

DRAWING NUMRER		MFGR NAME	DESCRIPTI	PH	CATALOG NO．	OTY．
－MFGR PART						
23013 A042		M INCOM	ARM－LIFTER，TAPE TRANSPORT		83－3210－0201	1.0
23013A041－1	D	MINCOM	SHAFT－ARM，TAPE LIFTER，2．125 LG		83－3280－0399	1.0
23013A041－2	D	MINCOM	SHAFT－ARM，TAPE LIFTER， 1.750 LG		83－3280－0400	1.0
MS 35206－218		MIL STD	SCREW－MACH，PAN HD，4－40 $\times 5 / 8$		83－9260－4519	2.0
			WASHER－FLAT，． 219 OD X ． 125 ID		83－9261－4012	2.0
MS 35338－40		MIL STD	WASHER－LOCK，SPLIT，HELICAL，\＃4		83－9261－4303	2.0
M70AS1032－8C		NYLOCK	SETSCREW－HEX，CUP PT，10－32X．50L		83－9261－4392	1.0

TITLE ARM ASSY-TAPF LIFTER, 1 IN TAPE

REF. DES. OR FIND NO.

1 2
3 3
4 4
5 6 7

DRAWING NUMBER MFGR NAIME - MFGR PART NO.

$23013 A 042$	
$23013 A 041-3$	MINCOM
$23013 A 041-4$	D 3 M
MS35	
	MIL STD
MS35338-40	
M7OAS1032-8C	MYL STD
	NYOCK

DESCRI P TII O N

ARM-LIFTER,TAPE TRANSPORT
SHAFT-ARM, TAPE LIFTER, 2.937 LG SHAFT-ARM,TAPE LIFTER,2.562 LG SCREW-MACH,PAN HD,4-40 $\times 5 / 8$ WASHER-FLAT,. 219 OD X . 125 ID WA SHER-LOCK, SPLIT, HELICAL, \#4 SETSCREW-HEX, CUP PT, 10-32X.50L

PH CATALOG NO. GTY.

83-3210-0201 1.0 83-3280-0401 1.0 83-3280-0404 1.0 83-9260-4519 2.0 83-9261-4012 2.0 $83-9261-4303 \quad 2.0$ 83-9261-4392 1.0

REF. DES. OR FIND NO.	DRAWING NUMBER - MFGR PART NO.		MFGR NAME	DESCRIPTION	PH CATALOG NO.	OTY.
C68	BR-100-150		CORNELL DUBL	CAP-FXD, ELECT, 100UF 150 V	83-1510-2207	1.0
CR77	1N4002		motorola	RECT-SI, SEMICOND,100PIV, 1 A	83-1530-0122	AR
J11	1-480304-0		AMP INC	SHELL-CONN,RECT, 3 POSITION	83-1610-1137	1.0
P11	1-480305-0		AMP INC	SHELL-CONN,RECT, 3 POS	83-1610-1142	1.0
R68	4592		OHMITE	RES-FXD, WW, 100 OHM 5W 5\%	83-1520-8185	1.0
$R 76$	LIttLE DEVIL		OHMITE	RES-FXD,COMP,470 OHM 2W 5\%	$83-9520-5528$	
S1,S2,S3,S4,S5	1018		PENDAR	SWITCH-PUSHBUTTON, SPDT,LIGHTED	83-1550-5148	5.0
S6			LIKON	SWITCH-ALTERNATE ACT, ILLUM	83-1550-5231	1.0
S7,59	TYPE SS16		STACKPOLE	SWITCH-SLIDE, DPTT	83-1550-5232	2.0
S 8	TYPE SS12		Stackpole	SWITCH-SLIDE,4PDT	83-1550-5230	1.0
S10,S11	513-0101-604		DIALCO	SWITCH-MOMENTARY, MAKE	83-1550-5233	2.0
2	42981-1-LP	4	AMP INC	SOCKET-CONTACT, CONN, SIZE 16	83-1610-0689	8.0
2	2VK180/1-2		VIKING	CONN-P.C.,ELEC,PIERCD, 36 CON	83-1610-0782	2.0
3	1-480273-0		AMP INC	SHELL-CONN, RECT,. 565 WDX. 65	83-1610-0923	1.0
4	1-480274-0		ANP INC	SHELL-CONN, RECT,. 65 WD X. 805	83-1610-0924	2.0
5	60510-4		ANP INC	CONTACT-ELEC, SOC, 18-22GA SIZE	83-1610-0927	44.0
6	1-480275-0		AMP INC	SHELL-CONN, RECT, . 650 WDX1.045	83-1610-0932	2.0
7	3006		H.H. SMITH	TERM B0-2. 250 RETWEEN MTG HOLE	83-1640-0588	2.0
8	$23013 A 017$	B	MINCOM	CHASSIS-SWITCH MTG, TRANSPORT	83-3310-0708	1.0
9	23013 AO16	C	MINCOM	PLATE-SWITCH MTG, TRANSPORT	83-3320-1115	1.0
10	SE-44 RRASS		UNITED SHOE	EYELET-BRASS, FLANGED, . 112 X .121	83-7290-0091	6.0
11			NATL WIRE	WIRE-TYPE B, 20GA VIHT NYLON JKT	83-7910-0035	AR
12			NATL MIRE	WIRE-TYPE B,20GA RLK NYLON JKT	83-7910-0039	AR
13			Natl wire	WIRE-TYPE R,22GA WHT NYLON JKT	83-7910-0043	$A R$
14			NATL WIRE	WIRE-TYPE R, 22GA WHT MYLON JKT	83-7910-0052	$A{ }^{\text {a }}$
15	\#EXE-22-122		thermax	HIRE-TYPE C, 22 GA WHT TEFLN JKT	83-7910-0476	ΔR
16	\#EXE-20-120		THERMAX	WIRE-TYPE C, ?OGA !IHT TEFLN JKT	83-7910-0496	AR
17	YEC 110		BURRNOY	FERRULE-RF CABLE GND, 083 ID	83-9690-0181	2.0
18	60511-4-LP		ARP INC	CONTACT-FLEC, PIN, .084 DIA	83-1610-0925	2.0
19	42983-1-LP		ArP INC	CONTACT-ELEC, SIIC, 16 SIZE	83-1610-0678	13.0
20	RAA-217		THUH \& BETTS	SPLICE-CONDUCTSR, RUTT TYPE	83-96351-0382	4.0
21	RA853		THLIAS \& BETS	TERH-LUG, IHSUL,R TG, 26 UID	83-9630-0203	2.11
22	RA373		Tlun \& BETTS	LUG-TERIINAL SOLDERLS,RING, \#10	83-9630-020.65	4.9
23	R18853		TILIES \& BETS	TFRA:-LUG, IN:SUL,R TG, . $31: 10$	83-9630-0206	2.11
26	230130031	C	MİCOLA	PLATE-CunN mtg, inst parel	83-3320-1114	1.0
28	MS35190-235		Mil Sto	SCRE: $:$-1.ACH,FH, 6 -32 $\times 5 / 16$	83-9260-6.516	4.0
30	MSS35338-41		Mil Sto	GASHER-LCICK, SPLIT, \#;	$83-926,1-4305$	4.11

REF. DES. OR FIND NO.

31
33

DRAWING NUMBER IFFGR NAME - MFGR PART NO.

WASHER-FLAT, SW PATT, \#6 NUT-HEX,SH PATT,6-32 $\times .250$: D NUT-PLAIN,HEX,5/8-24,3/32 THK

PH CATALCIG NCI. QTY.

83-9261-4013
83-9260-2202 4.0
83-9260-0064 1.0
title p.C. bd assy-logic transport
CATALOG NO. 83-4930-1716

REF. DES. OR FIND NO. | DRAWING NUMBER | |
| :--- | :--- |
| | $-M F G R ~ P A R T ~ N O . ~$ |

$C 1$
$C 3$
$C 4, C 5, C 6$
$C 7$

C7
C8,C9
C10
C11
C12
CR1,CR3,CR6,CR7,CR8, CR9, CR10,CR13,CR14,CR15,CR17, CR19,CR 20,CR21,CR24, CR 25 CR26,CR27,CR28,CR29,CR41 CR4, CR 16, CR18, CR 30, CR31, CR32, CR37,CR38, CR39, CR40, CR42,CR43,CR44,CR45 CR46,CR47,CR48,CR49 CR50,CR51
CR52,CR53

Fl

$K 1, K 2, K 3, K 4, K 5, K 6, K 7, K 8$
$01,02,03$
R1
R5
R6
R 7
R8
R9
R10,R11
R12,R13
R14
R15
R16
R17,R18
R19,R20
R21,R22
R23

TC3501
 BR 250-50
 TYPE P1232NP
 TSD5-20-686 TYPE P123ZNP 00000A748 313-M OD475×9035B2 1N4002

IN4004

MR 1033 A
1N4750 1N3002

312004 .
KHP17012
2N3053
0A781-7331
0A781-7221
1720
0A781-7335
1730
LITTLE DEVIL
LITTLE DEVIL
LITTLE DEVIL
LITTLE DEVIL
0A781-7355
LITTLE DEVIL
OA781-7337
0A781-7147
0A781-7375
0A781-7325

MFGR NAME DESCRIPTION
PH CATALOG NO.
MALLORY
CORNELL DUBL

CORNELL DUBL CAP-FXD,ELECT, 250 UF AEROVOX CAP-FXD $\begin{array}{lll}\text { COMP INC CAP-FXD,TA, } 647 \mathrm{UF} & 400 \mathrm{~V} 20 \% \\ 20 \mathrm{~V} & 20 \%\end{array}$ AEROVOX CAP-FXD,PAPER, .OIUF 200V 25\%
B MINCOM
ARCO SPRAGUE
MOTOROLA

MOTOROLA

MOTOROLA
MOTOROLA
MOTOROLA
LITTELFUSE
RECT-Sl, 300 PRV, 3.0 AMP DIODE-S1,ZENER, $27 \mathrm{~V}, 30 \mathrm{MA}$
DIODE-SI.ZENER, 75V 33 MA
FUSE-OUICK ACT,250V 4 AMP
POT \& BRUMFD RELAY-4PDT, 24 VDC 650 OHM
R.C.A. TSTR-SI,NPN, PWR, 60 VCB

MINCOM SPEC MINCOM SPEC OHMITE MINCOM SPEC OHMITE
OHMITE
OHMITE
OHMITE
OHMITE
MINCOM SPEC
OHMITE
MINCOM SPEC
MINCOM SPEC
MINCOM SPEC
MINCOM SPEC
RES-FXD,FILM, 27 OHM, 1/2W, 2% S RES-FXD,FILM, 100 OHM, 1/2W, 2\% S RES-FXD, WW, 100 OHM $10 \mathrm{~W} 5 \%$ RES-FXD,FILM, 39 OHM, $1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}$ RES-FXD, WW,500 OHM $10 \mathrm{~W} 5 \%$ RES-FXD,COMP, 100 OHM 2W 5% RES-FXD,COMP,270 OHM 1W 5\% RES-FXD,COMP,2.7 OHM 1W 5\% RES-FXD, COMP, 1. 2 K OHM $1 \mathrm{~W} 5 \%$ RES-FXD,FILM, 560 OHM, $1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}$ RES-FXD,COMP, 150 OHM 1W 5\% RES-FXD,FILM, 47 OHM, 1/2W,2\% S RES-FXD,FILM,4.7K OHM,1/2W,2\% RES-FXD,FILM, 33K OHM, 1/2W, 2\% S RES-FXD,F1LM, 10 DHM,1/2W,2\%

XMFR-TORROIDAL,BIFILAR

$83-1510-2045$	1.0
$83-1510-2031$	1.0
$83-1510-4072$	3.0
$83-1510-6211$	1.0
$83-1510-4046$	2.0
$83-3510-5368$	1.0
$83-1510-5001$	1.0
$83-1510-6095$	1.0
$83-1530-0122$	21.0

83-1530-0151 14.0

$83-1530-0364$	4.0
$83-1530-0365$	2.0

$83-1530-0301$	2.0

83-7550-8016 1.0

83-1550-3678 8.0
$83-1530-2180 \quad 3.0$
83-1520-7331 1.0
83-1520-7221 1.0 83-1520-8253 1.0 $\begin{array}{ll}83-1520-7335 & 1.0 \\ 83-1520-8007 & 1.0\end{array}$ 83-9520-5520 1.0 83-9520-4091 2.0 83-9520-4000 2.0 83-9520-4153 1.0 $\begin{array}{ll}83-1520-7355 & 1.0 \\ 83-9520-4134 & 1.0\end{array}$ $\begin{array}{ll}83-9520-4134 & 1.0 \\ 83-1520-7337 & 2.0\end{array}$ 83-1520-7147 2.0 83-1520-7375 2.0 83-1520-7325

83-3540-1153 1.0

TITLE P.C. BD ASSY-LOGIC TRANSPORT
CATALOG NO. 83-4930-1716

REF. DES. OR FIND NO. DRAWING NUMBER - MFGR PART NO.
$9 \mathrm{KH}-2$
23013 A061

MS 35338-41
2515
\#EXE-22-122
KHP
MS 35206-227
8070-E
4405
MS 35206-215
MS 35335-29

3025-005
$10160-D A P$

POTTR \& BRUM SOCKET-RELAY, 14 PIN

G MINCOM

P.C. BD-BIAS OSCILLATR \& LOGIC NUT-HEX,SM PATT,6-32 X . 250 WD SCREW-MACH,PAN HD,6-32 X $21 / 4$ WASHER-FLAT,SM PATT,\#6
MIL STD H.H.SMITH THERMAX POTTER/BRUMF MIL STD LERCO BUSSMANN MFG MIL. STD

MIL STD

3M
MILTON ROSS

WASHER-LOCK, SPLIT, \#6
WASHER-LOCK, SPLIT, \#6
INSULATOR-WASH, NYLON, \#6
WIRE-TYPE C, 22GA WHT TEFLN JKT SPG-HOLD DOWN,RELAY
SCREW-MACH,PAN HD,6-32 X 5/16
WASHER-FLAT,GENERAL PURPOSE, \#6 WASHER-FLAT, GENERAL PURPOSE, \#6
SPACER-SLV, HEX, TAP, . 500 LG FUSEHOLDER-BLOCK,AG 3 FUSE SCREW-MACH,PAN HD,4-40 $\times 3 / 8$ WASHER-FLAT,. 219 OD X . 125 ID WASHER-LOCK, FLAT, EXT T,\#4 WASHER-PLAIN,. 125 ID X. 1870 D WASHER-PLAIN, 125 ID X. 1870 D
NUT-HEX,SM PATT,4-40 X .188 WD CANCEL- 1-26-68, PER EO 12228 TUBING-CLEAR VINYL,. 047 ID PAD-TRANSISTOR,FOR TO-5 CASES

$83-1620-0184$	8.0
$83-3640-0595$	1.0
$83-9260-2202$	2.0
$83-9260-4594$	2.0
$83-9261-4013$	2.0
$83-9261-4305$	5.0
$83-9630-0268$	6.0
$83-7910-0476$	$A R$
$83-1280-0571$	8.0
$83-9260-4530$	3.0
$83-9261-4004$	3.0
$83-9350-0063$	15.0
$83-1620-0001$	1.0
$83-9260-4515$	1.0
$83-9261-4012$	1.0
$83-9261-4101$	1.0
$83-9630-0115$	1.0
$83-9260-2201$	4.0
$83-9261-2201$	1.0
$83-7910-0272$	AR
$83-9690-0145$	1.0

title p.c. bd assy-SENSOR,incoming chitalug no. e3-4930-1046

REF. DES. OR FIND NO.	DRAWING NU:UR - MFGR PART	MFGR NAliE	DESCRIPTIOM	Ph Catalog NO .
C67	TSD1-35-105	COMP INC	CAP-FXD, TA, LUF 35V 20%	83-1510-6208
CR63	3P60	SOLID State	SEMICOND DEV-PHiATO,LT ACT S!ITC	83-1530-6013
CR65	1 N4002	mitiorola	RECT-SI, SEiICOMD, 100PIV, 1 A	83-1530-0122
R67	little devil	OHHITE	RES F XD, COT: P, 100K OHI: $1 / 4 \mathrm{l}$: 5%	83-9520-2119

TITLE P.C. BD ASSY-TAPE SEUSUR,OUTGO CATALOG FO. 83-40 30-1691

REF. DES. OR FIND NU.

061,062
R72
1

DRAWING NUMBER NFGR MAFIE DESCR I P T I O

GEMERAL ELEC TSTR-SI, IMPN, PFR, 25 VCF
2N3391
LITTLE DEVIL
Ohim ITE
23013 BO 76 C HINCO: - MFGR PART NO.

PH CATALCG NO.
OTY.

RES-FX!, CO\%P, 12K OHF $1 / 4 \% 5 \%$ 83-9520-2159 1.0
P.C. BD-TAPE SEN:SOR, CUTGOING 83-3640-1093 1.0

TITLE CHASSIS ASSY-WRAP AROUNO, TRAMS CATAIOG NO. 83-5920-1332

REF. DES. OR FIND NO.

DRAWING NUMBER MFGR NAME D E S C R I P T I 0 N

ARM-ROLLER, IDLER
PIN-ACTUATOR,IDLFR ARM
GROOV-PIN PIN-GRVD,HDLS, :125 DIAX.500LG PENN ENGNRNG NUT-CLINCH,PLAIN,4-40 X . 250 $!\mathrm{D}$

PH CATALGG iwo.

83-3210-0203 83-3280-0408 83-7280-0202 $\begin{array}{rl}83-7280-0202 & 1.0 \\ 83-92.64-0005 & 1.0\end{array}$
1.0
1.0

TITLE ARM ASSY－IDLER，ROLLER，RH
CATALOG NO．83－4210－0231

REF．DES．OR FIND NO．

1
2
DRAWING NUMPER MFGR NAME DESCRIPTION
ph catalog no．oty．
－mFGR Part No．

$23013 A 006$	B MINCOM	ARM－ROLLER，IDLER
$23013 A 012$	MINCOM	PIN－ACTUATOR，IDLER ARM
GP67－125×500－12	GROOV－PIN	PIN－GRVD，HDLS， 125 DIAX．500LG
CLS－440－3	PENN ENGNRNG	

83－3210－0203 1．0
83－3280－0408 1.0
83－7280－0202 1．0
83－9264－0005 1．0
TITLE ARM ASSY-ACTUATOR,DOOR HD CVR CATALOG NO. 83-4210-0237

```

REF. DES. OR FIND NO.

1
2
drawing number mFgr name
DE
ESCRIPTION

LEVER-DOOR,HEAD COVER BRACKET-LEVER MTG,DASHPOT
ph catalog no. oty.

83-3210-0202 1.0 83-3320-1049 1.0

TITLE TAPE GUIDE ASSY-PREPLAY CATALOG NO. 83-3240-0440

REF. DES. DR FIND NO.

1
2
3
4
5
6

DRAWING NUMBER MFGR NAME
- MFGR PART NO.

23013A129-1 23013A128-2 23013A127-1 23013 Al 26 S814FCZZ7LG31 MS35190-223

MINCOM
MINCOM MINCOM MINCOM

MIL STD

D E S CRIPTION

SHAFT-TAPE GUIDE, PREPLAY CAP-TAPE GUIDE,PREPLAY,. 500 HT HOUSING-TAPE GUIDE,PREPLAY SPRING-WASHER, BGR PRELOAD BRG-BALL, ANLR,FLNGD,. 2500 BORE SCREW-MACH,FH,4-40×3/8

PH CATALOG NO. OTY.

83-3280-0612 1.0 83-3250-0153 1.0 83-3310-1132 1.0 83-3280-0611 1.0 83-12.30-0325 2.0 83-9260-6504 1.0

TITLE TAPE GUIDE ASSY-PREPLAY,1/2 IN

REF. DES. OR FIND NO.

1
2

DRAWING NUMBER - MFGR PART NO.

23013A129-1 MINCOM
23013A128-1 23013A127-1 23013A126 S814FCZZ7LG31 MS 35190-223

MFGR NAME

MINCOM M INCOM MINCOM

MIL STD

DES CRIP T I O N

SHAFT-TAPE GUIDE, PREPLAY CAP-TAPE GUIDE, PREPLAY HOUSING-TAPE GUIDE,PRREPLAY SPRING-WASHER,RGR PRELOAD BRG-BALL,ANLR,FLNGD, 2500 BORE SCREW \(-\mathrm{M}_{1} A C H, F H, 4-40 \times 3 / 8\)

PH CATALOG NO. OTY.

83-3280-0612 1.0 \(83-3250-0151\) 1.0 83-3310-1132 1.0 83-3280-0611 1.0 83-1230-0325 1.0 \(\begin{array}{ll}83-9260-6504 & 1.0\end{array}\)

PARTSLIST
PL 23013A125－3
REV \(A\)
TITLE TAPE GUIOF ASSY－PRFPLAY，I INCH CATALOG NO．K3－3240－0443

RFF．DES．OR FIND NO．

1
2

DRAWING NUMRFR MFGR NAME －HFGR PART Nח．

23013A129－2 MINCOM 23013A128－1 MINCOM 23013A127－2 MINCOM 23013 A126 S814FCZ27LG31 MS 35190－223

MINCOM
MIL STD

SHAFT－TAPE GUIDE， 1 INCH CAP－TAPE GUIDE，PRFPLAY HOUSING－TAPE GUIDE，PREPLAY，IIN SPRING－WASHER，RGR PRFLIIAD BRG－BALL，ANLR，FI．NGก，． 2500 RORF SCREW－MACH，FH，4－40 X 3／8

PH CATALOG NO．OTY．

83－3280－0619 1 83－3250－0151 1.0 83－3310－1152 1．0 83－32．80－0611 1．0 \(83-1230-0325 \quad 2.0\) 83－0260－6504 1．0

REF. DES. OR FIND NO.

1

DRAWING NUMPIER
MFGR NANE
D
E S C R I P T I O N

BASE-REEL HUR, \(1 / 4\) IN TAPE TIRE-BRAKE, RURRER
RING-BRAKE, REEL HUB,1/4 IN SCREW-MACH,FH,4-40 \(\times 3 / 8\)

23013A162
230134161
MS 35190-223

C MINCOM
A MIINCOM
MINCOM
MIL STD

PH CATALEG NO. (ITY.

83-3240-0364 83-3390-0037 1.0 83-3220-0217 1.0 \(83-9760-6504\) 3.0
1.0
1.0

REF. DES. OR FIND NO. DRAWING NUMBER
- MFGR PART Nח.

23013A064-1 23007A030-1 MS 35206-228 23013 A056-1 MS 35206-212 MS35338-40 23007A060-1
MS16998-31
MS 35338-43
23013A040-1
23007A040-1 230074040-2 MS 35206-223 23007A020-1 MS 16997-66 MS 35338-44 AN960-416L 23007A044-1 23007A044-2 \(23007 \mathrm{AO} 44-3\) 23007A044-4 23007A003-1 23007A003-2

C MINCOM
C MINCOM MIL STO
A MINCOM MIL STO MIL STD
F MINCOM
MIL STD MIL STD

C MINCON NYLOCK
B MINCOM
B MINCOM MIL STD D MINCOM MIL STD MIL STD A \& N STD
A MINCOM
A MINCOM
A MINCOM
A MINCOM
O MINCOM
D MINCOM

SCREW-MTG, TAPE GUIDE
DOOR ASSY-HEAD COVER, TPE TRANS 10 83-4330-0241 SCREW-MACH,PAN HD,6-32 X 3/8 BL ADE-TAPE EDITING, TAPE GUIDE SCREW-MACH,PAN HD,4-40 X 3/16 WASHER-LOCK, SPLIT,HELICAL,\#4 CAPSTAN ASSY-TAPF TRANS,1/2 IN SCREW-SHC, 10-32X1
WASHER-LOCK, SPLIT,HELICAL, \# 10 WA SHER-FLAT, SM PATT, \#10 ARM ASSY-TAPF LIFTER, \(1383-9261-4046\) SC,REW-MACH,FH,100\% 10-32 X 5/8 16 83-9260-0029 KOLLER ASSY-IDLFR,1/2 IN INCOM 16 83-4240-0310 ROLLER ASSY-IOLFR, 1/2 IN OTGNG 16 83-4240-0311 SCREW-MACH, PAN HO,4-40 X 1 1/2 16 R3-9260-4525 IILER ASSY-REVERSING, \(1 / 2\) INCH 16 R3-4240-0318 SCREW-CAP, SOC HD,1/4-20 X 2.00 16 83-9261-2123 WASHER-LOCK, SPLIT,HELICAL,\#1/4 16 83-9261-4309 WASHER-FLAT,LIGHT SERIES,\#1/4 16 83-9262-0046 SHIM-IDLER, TAPF DRIVE,.002 THK 16 83-3230-0362 SHIM-IDLER, TAPE DRIVE,.OO5 THK 16 83-3230-0363 SHIM-IDLER, TAPE ORIVE,.010 THK 16 83-3230-0.364 SHIM-IDLER, TAPF RRIVF,.020 THK 16 83-3730-0365 COVER-IDLER, SNAP-ON,LH,1/2 IN 20 R3-3310-(1846 COVER-IDLER,SNAP-ON,RH,1/2 IN 20 83-3310-0847
4.0
1.0
2.0
1.0
1.0
3.0
1.0
3.0
3.0
3.0
1.0
1.0
1.0
1.0
2.0
1.0
1. 0
1.0
1.0
\(A R\)
\(A R\)
\(A R\)
AR
1.0
1.0

REF. DFS. OR FIND NO. DRAWING NUMBER MFGR NAME - MFGR PART NO.

23007A030-2 MS35206-278 23013A056-2 MS35206-21?
MS 35338-40 23007A060-2 MS 16998-31 MS35338-43
\(230134040-\) ?
23007A040-3 23007A040-4

23007A020-2 MS16997-66
MS 35338-44
AN960-4161
23007A044-1 23007A044-2 23007A044-3 23007A044-4 23007A003-3 23007A003-4

C MINCOM
C MINCOM MIL STD
A MINCOM MIL STD MIL STD
F MINCOM MIL STD MIL STD

C MINCOM NYLOCK B MINCOM B MINCOM

D MINCOM
MIL STD MIL STD A \& N STD

\section*{A MINCOM}

A MINCOM
A MINCOM
A MINCOM
D MINCOM
C MINCOM
1) \(E S G R I P T I O N\)

SCREW-MTG, TAPF GUIDE

SC.REW-MACH,PAN HD,6-32 \(\times 3 / 8\)
BLADE-TAPE EDITING, 1.12 LG
SCREW-MACH,PAN Hח, 4-40 \(\times 3 / 16\)
WASHER-LOCK, SPLIT,HELICAL, \# 4
CAPSTAN ASSY-TAPE TRANSPORT
SCREW-SHC, 10-32×1
WASHER-LOCK, SPLIT,HELICAL, \#10 WASHER-FLAT, SH PATT, \#10
- \(1383-9261-4046\)

ARM ASSY-TAPE LIFTER, 1 IN TAPE 16 83-4210-0242 SCREW-NACH,FH, 100\% \(10-32 \times 5 / 816 \quad 83-9260-0029\) ROLLER ASSY-IDLER, 1 IN INCOM 16 83-4240-0314 ROLLER ASSY-IDLER, 1 IN OUTGO 16 83-4240-0315 SCREW-MACH,PAN HD, 4-40 X 2.0016 83-9260-4604 IDLER ASSY-REV,TAPE TRANSPORT 16 83-4740-0319 SCREW-CAP, SOC HO, 1/4-20 X 2.00 16 83-9261-2123 WASHER-LOCK, SPLIT, HELICAL, \#1/4 16 83-9261-4309 WASHER-FLAT, LIGHT SERIES, \#1/4 16 83-9262-0046 SHIM-IDLER, TAPE DRIVE,.002 THK 16 83-3230-0362 SHIM-IDLER, TAPE DRIVE,.005 THK 16 83-3230-0363 SHIM-IDLER, TAPF DRIVF,.010 THK 16 83-3230-0364 SHIM-IDLER, TAPF DRIVE,.020 THK 16 83-3230-0365 COVER-IDLER, SNAP-ON, I IN LH \(20 \quad 83-3310-0848\) COVER-IDLER, SNAP-ON, 1 IN RH 20 83-3310-0849
4.0
1.0
2.0
1.0
1.0
3.0
1.0
3.0
3.0
3.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
1.0
1.0
\(A R\)
\(A R\)

REF．DFS．OR FIND NO．

DR AWING NUMRER －MFGR PART Nח．

23013A077－1 MINCOM 23013A077－2 MINCOM 23013A077－3 23013A077－4 23013A013－1 23013 AO14－1

MINCOM MINCOM

\section*{D MINCOM}

C MINCOM

SHIM－TAPE GUIDE，． 002 THK SHIM－TAPE GUIDE，． 005 THK SHIM－TAPE GUIDE，． 010 THK SHIM－TAPF GUIDF，．020 THK TAPE GUIDE－INCOMING， \(1 / 4\) IN TAPE GUINE－OUTGOING，1／4 IN

PH CATALOG NO．OTY．

83－3230－0401 \(\Delta R\) 83－3230－0402 AR 83－3230－0403 AR 83－3730－0404 AR
\(\begin{array}{lll}11 & 83-3240-0326 & 7.0 \\ 11 & 83-3240-0332 & 2.0\end{array}\)

REF. DES OR FIND NO.
DRAWING NUMBER - MFGR PART NO.

67
68 69 70 65 66

23013A077-1 MINCOM
23013A077-2 MINCOM

M INCOM
MINCOM
\(\begin{array}{lr}23013 A 077-3 & \\ 23013 A 077-4 & \text { MINCOM } \\ 23013 A 013-2 & \text { DINCOM } \\ 23013 A 014-2 & \text { C MINCOM } \\ \end{array}\)
\(\begin{array}{lr}23013 A 077-3 & \\ 23013 A 077-4 & \text { MINCOM } \\ 23013 A 013-2 & \text { DINCOM } \\ 23013 A 014-2 & \text { C MINCOM } \\ \end{array}\)
\(\begin{array}{lr}23013 A 077-3 & \\ 23013 A 077-4 & \text { MINCOM } \\ 23013 A 013-2 & \text { DINCOM } \\ 23013 A 014-2 & \text { C MINCOM } \\ & \end{array}\) 23013A014-2

SHIM-TAPE GUIDE,.002 THK SHIM-TAPE GUIDE,. 005 THK SHIM-TAPE GUIDE, . 010 THK SHIM-TAPE GUIDE, . 020 THK TAPE GUIDE-INCOMNG,1/2 IN TAPE 11 83-3240-0327 2.0 TAPE GUIDE-OUTGNG, 1/2. IN TAPE 11 83-3240-0333 2.0

83-3230-0404 AR

83-3230-0401 AR 83-3230-0402 AR 83-3230-0403

R E

\section*{TITLE KIT-TAPE GUIDE, 1 INCH CATALOG NO. 83-5990-0558}

REF. DES. OR FIND NO.

C3
K13
DRAWING NUMBER
- MFGR PART NO.
BR500-25
ph Catalog No. oty.

KHP17D11
23013A013-4 23013A014-4
23013A077-1
23013A077-2 23013A077-3 23013A077-4

CORNELL DUBL CAP-FXD,ELECT, 500UF 25 V
POTTR \& BRUM RELAY-4PDT,650 OHM 24VDC 3 AMP
1.0

83-1550-3550
1.0 83-3240-0335 83-3230-0401 83-3230-0402 83-3230-0402 83-3230-0403 83-3230-0404 AR

REF. DES. OR FIND NO.

DRAHING NUMRER MFGR NAME DESCR I P T I ON - MFGR PART NO.
\begin{tabular}{ll}
\(23013 A 077-1\) & MINCOM \\
\(23013 A 077-2\) & MINCOM \\
\(23013 A 077-3\) & MINCOM \\
\(23013 A 077-4\) & MINCOM \\
\(23013 A 013-5\) & D MINCOM
\end{tabular}

SHIM-TAPE GUIDE,.002 THK SHIM-TAPE GUIDE,. 005 THK SHIM-TAPE GUIDE, . 010 THK SHIM-TAPE GUIDE, . 020 THK TAPE GUIDE-INC, \(1 / 4\) IN TAPE TAPE GUIDE-OUTGOING,1/4 IN

PH CATALOG NO. OTY.

83-3230-0401 83-3230-0402 83-3230-0403 83-3230-0404
11 83-3240-0396
11.83-3240-0398
\(A R\)
\(A R\) \(A R\) AR 2.0


TITLE KIT-TAPE GUIDE,1/2 IN,I IN CAP
CATALOG NO. 83-5990-0432

REF. DFS. OR FIND NO.
67
68
69
70
65
66

DRAWING NUMBER
MFGR NAME
D E S C R I P T I O N
PH CATALOG NO. OTY.

MINCOM
M INCOM
M INCOM
MINCOM
1) MINCOM

C MINCOM

SHIM-TAPE GUIDE,. 002 THK SHIM-TAPE GUIDE,. 005 THK SHIM-TAPE GUIDE, . 010 THK SHIM-TAPE GUIDF, . 020 THK TAPE GUIDE-INC,1/2 IN TAPE TAPE GUIDE-OUTGOING,1/2 IN

83-3230-0401
83-3230-0402
83-3230-0403 83-3230-0404
11 83-3240-0397
\(\begin{array}{lll}11 & 83-3240-0397 & 2.0 \\ 11 & 83-3240-0399 & 2.0\end{array}\)
\(A R\)
\(A R\)
\(A R\)
\(A R\)
2.0
2.0

REF. DFS. OR FIND NO.

DRAWING NUMRER MFGR NAME - MFGR PART NO.
\(\begin{array}{ll}23007 C 010-1 & \text { F MINCOM } \\ 230074016 & \text { B MINCOM }\end{array}\) 23007 A016 MS16998-2.7

MS35338-43
23007 A061
19007 A022
23007A023-2

B MINCOM MIL STD

MIL STD
D MINCOM
D MINCOM
C MINCOM

MOTOR ASSY-CAPSTAN, 3 3/4-7 1/2 SHIELD-CAPSTAN MOTOR,MODEL 23 SCREW-CAP, SOC HO, 10-32 X \(1 / 2\) WASHER-FLAT, GENFRAL PURPSE, \# 10 WASHER-LOCK, SPLIT,HELICAL, \#10 FLYWHEEL-CAPSTAN,MODEL 23 CAP-FLYWHEEL,PRECISION PLATE SCR-CAP,FH, \(1 / 4 \times 20 \times 5 / 8\), NYLOC CAP-IDLER,REVERSING,PLAIN

PH CATALOG NO. OTY.
\begin{tabular}{ll}
\(83-4560-0149\) & 1.0 \\
\(83-3650-0363\) & 1.0 \\
\(83-9261-2101\) & 4.0 \\
\(83-9261-4006\) & 4.0 \\
\(83-9761-4307\) & 4.0 \\
\(83-32.20-0146\) & 1.0 \\
\(83-3250-0082\) & 1.0 \\
\(83-9262-0569\) & 1.0 \\
\(83-3250-0108\) & 1.0
\end{tabular}

\section*{TITLE KIT－SPEED， 7 1／2－15 IPS}

CATALOG NO．83－5990－0560

REF．DES．OR FIND NO．

6
7
8
9
10
11
12
13
14
15

DRAWING NUMBER
－mFgr part no．

\section*{23007C010－2}

23007 A016
23007A014－1
MS 16998－28
MS 35338－43
23007A061
19007A022
23007A023－2

F MINCOM
B MINCOM
B MINCOM
MIL STO
MIL STD
D MINCOM
D MINCOM
C MINCOM

MOTUR ASSY－CAPSTAN，7 1／2－15 SHIELD－CAPSTAN MOTOR，MODEL 23 SPACER－MOTOR MTG，7 1／2－15 IPS SCREW－CAP，SOC HD，10－32 \(\times 5 / 8\) WASHER－FLAT，GENERAL PURPSE，\(\# 10\) WASHER－LOCK，SPLIT，HELICAL，\＃10 FLYWHEEL－CAPSTAN，MODEL 23 CAP－FLYWHEEL，PRECISION PLATE SCR－CAP，FH， \(1 / 4 \times 20 \times 5 / 8\) ，NYLOC CAP－IDLER，REVERSING，PLAIN

PH CATALOG NO．OTY．
\begin{tabular}{ll}
\(83-4560-0150\) & 1.0 \\
\(83-3650-0363\) & 1.0 \\
\(83-3230-0311\) & 1.0 \\
\(83-9261-2102\) & 4.0 \\
\(83-9261-4006\) & 4.0 \\
\(83-9261-4307\) & 4.0 \\
\(83-3220-0146\) & 1.0 \\
\(83-3250-0082\) & 1.0 \\
\(83-9262-0569\) & 1.0 \\
\(83-3250-0108\) & 1.0
\end{tabular}

REF. DES. OR FIND NO.

DRAWING NUMBER MFGR NAME D E S C R I P T I 0 N
- MFGR PART NO.
\begin{tabular}{ll}
\(23007 C 010-4\) & F MINCOM \\
\(23007 A 016\) & B MINCOM \\
\(23007 A 014-1\) & B MINCOM \\
MS \(16998-28\) & MIL STD \\
& \\
MS \(35338-43\) & MIL STD \\
\(23007 A 061\) & D MINCOM \\
\(19007 A 022\) & D MINCOM \\
& \\
230078023 & A MINCOM
\end{tabular}

MOTOR ASSY-CAPSTAN, 50 CYCLE SHIELI-CAPSTAN MOTOR, MODEL 23 SPACER-MOTOR MTG,7 1.2-15 IPS SCREW-CAP, SOC HD, 10-32 \(\times 5 / 8\) WA SHER-FLAT,GENERAL PUR'PSE, \#10 WASHER-LOCK, SPLIT,HELICAL, \# 10 FLYWHEEL-CAPSTAN,MODEL 23 CAP-FLYWHEEL,PRECISION PLATE SCR-CAP,FH,1/4X20×5/8, NYLOC CAP-CAPSTAN STRORE, 50 HZ

PH CATALOG NO.
©TY.

83-4560-0158 1.0
\(83-3650-03631.0\) 83-3230-0311 1.0 83-9261-2102 83-9261-4006 83-9261-4307 4.0 \(83-3220-0146\) 1.0 83-3250-0082 1.0 83-9262-0569 1.0 83-3250-0183 1.0

REF．NFS．OR FIMI）NO．

\section*{DRAWING NUMBER} －MFGR PART NO．
\begin{tabular}{ll}
\(23007 C 010-3\) & F MINCOM \\
\(23007 A 016\) & B MINCOM \\
\(23007 A 014-2\) & B MINCOM \\
MS \(16998-29\) & \\
& MIL STD \\
MS \(35338-43\) & MIL STD \\
\(23007 A 061\) & D MINCOM \\
\(19007 A 022\) & D MINCOM \\
\(23007 A 023-2\) & C MINCOM
\end{tabular}

DESCRIPTIOM

MOTOR ASSY－CAPSTAN，15－30
SHIELD－CAPSTAN MOTOR，MODEL 23 SPACER MOTOR MTG，CAPSTAN SCREW－CAP，SOC HD，10－32 \(\times 3 / 4\) WASHER－FLAT，GENERAL PURPSE，\＃10 WASHER－LOCK，SPLIT，HELICAL，\＃10 FLYWHEEL－CAPSTAN，MODEL 23 CAP－FLYWHFEL，PRECISIDN PLATE SCR－CAP，FH， \(1 / 4 \times 20 \times 5 / 8\) ，NYLOC CAP－IDLER，REVERSING，PLAIN

PH CATALOG NO．OTY．

83－4560－0151 1.0
83－3650－0363 1．0 83－3230－0312 1．0 83－9761－2103 4．0 83－9261－4006 4．0 83－9261－4307 83－3220－0146 1．0 83－3250－0082 1．0 83－9262－0569 1．0 83－3250－0108 1．0

REF. DES. OR FIND NO. 6
\begin{tabular}{lll} 
DRAWING, NUMRER & MFGR NA \\
- MFGR PART NO. & \\
& \\
\(23007 C 010-5\) & F MINCOM \\
\(23007 A 016\) & B MINCOM \\
\(23007 A 014-3\) & A MINCOM \\
MS \(16998-29\) & & MIL STD \\
MS \(35338-43\) & & MIL STD \\
\(23007 A 061\) & D MINCOM \\
\(19007 A 022\) & D MINCOM \\
\(23007 B 023\) & A MINCOM
\end{tabular}


D E S C R I P T I O N

MOTOR ASSY-CAPSTAN, 15-30,50 CY SHIELD-CAPSTAN MOTOR,MODEL 23 SPACER-MOTOR MTG,CAPSTAN
SCREW-CAP, SOC HD, 10-32 \(\times 3 / 4\) WASHER-FLAT, GENERAL PURPSE, \# 10 WASHER-LOCK, SPLIT,HELICAL,\#10 FLYWHEEL-CAPSTAN,MODEL 23 CAP-FLYWHEEL,PRECISION PLATE SCR-CAP,FH, \(1 / 4 \times 20 \times 5 / 8\), NYLOC CAP-CAPSTAN STROBE, 50 HZ

PH CATALOG NO. OTY. 83-4560-0159 83-3650-0363 83-3230-0469 1.0 83-9261-2103 4.0 83-9261-4006 4.0 83-9261-4307 4.0 83-3220-0146 1.0 83-3250-0082 1.0 83-9262-0569 1.0 83-3250-0183 1.0

REF．DES．OR FIND NO． DRAHING NUMBER
－MFGR PART NO．
\begin{tabular}{ll}
\(23007 C 410-1\) & B MINCOM \\
23007 AO16 & B MINCOM \\
MS \(16998-27\) & \\
& MIL STD \\
MS35338－43 & \\
23007 MIL STI \\
\(19007 A 022\) & E MINCOM \\
23007 MOLNCOM \\
\(23-2\) & C MINCOM
\end{tabular}

MFGR NAME

OOTOR ASSY－CAPSTAN，30－60 SHIELD－CAPSTAN MOTOR，MODEL 23 SCREW－CAP，SOC HD，10－32 \(\times 1 / 2\) WASHER－FLAT，GENFRAL PURPSE，\＃ 10 WASHER－LOCK，SPLIT，HELICAL，\＃10 FLYWHEEL－CAPSTAN， 120 IPS CAP \(-F L Y W H E E L, P R E C I S I O N\) PLATE SCREW－SELF LOCK，FH，1／4－20 \(\times 3 / 4\) CAP－IDLER，REVERSING，PLAIN

PH CATALOG NO．
OTY．
D ESCP IPTION 83－4560 83－4560－0152 1．0 83－3650－0363 1．0 83－9261－2101 4．0 83－9261－4006 4．0 83－9261－4307 4．0 83－3220－0171 1．0 \(83-3250-00821.0\) \(\begin{array}{ll}83-3250-0082 & 1.0 \\ 83-9262-0204 & 1.0\end{array}\) 83－3250－0108 1．0

TITLE KIT-SPEED, 60-120 IPS
CATALOG NO. 83-5990-0563

REF. DES. OR FIND NO.

\section*{6} 9 10 11 12 12

DRAWING NUMBER
MFGR NAME
D

MOTOR ASSY-CAPSTAN, 60-120 SCREW-CAP, SOC HD, 10-32 \(\times 1 / 2\) WA SHER-FLAT, GENERAL -PURPSE, \#10 WASHER-LOCK, SPLIT,HEL ICAL, \#10 FLYWHEEL-CAPSTAN, 120 IPS CAP-FLYWHEEL,PRECISION PLATE SCREW-SELF LOCK,FH,1/4-20 \(\times 3 / 4\) CAP-IDLER, REVERSING, PLAIN

23007C410-2 B MINCOM MS16998-27 MIL STD

MS35338-43 MIL STD
23007 A461 E MINCOM
19007 AO22 D MINCOM
23007A023-2
C MINCOM MINCOM

PH CATALOG NO. OTY.

83-4560-0153 1.0 83-9261-2101 4.0 83-9261-4006 83-9261-4307 4.0 83-3220-0171 \(83-3250-00821.0\) 83-9262-0204 1.0 \(83-3250-0108\) 1.0
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & REF. OES. OR FIND NO. & \multicolumn{2}{|l|}{\begin{tabular}{l}
DRAWING NUMBER \\
- MFGR PART NN.
\end{tabular}} & MFGR NAME & DESCRIPTION & ph catalug no. & оту. \\
\hline & C 71 & 360552G025AB & & Sprague & CAP-FXD, ELECT,5500 UF 25 V & 83-1510-2171 & 1.0 \\
\hline & C72 & 200P1904 & & sprague & CAP-FXD,ELEC,5 MF 370VAC 10\% & 83-1510-2243 & 1.0 \\
\hline & 16 & 42C1150C-AX & & PHILLIPS CON & SOLENOID-LINEAR, 115 VOLTS & 83-1550-4517 & 1.0 \\
\hline & & \(36-909 \mathrm{H}\) & & sprague & BRACKET-CAPACITIR MTG & 83-1320-1587 & 2.0 \\
\hline & 2 & \[
21 F K-832
\] & & STU PRSO STL & NUT-HEX, SELF LOCK,8-32 X.345wD & \[
83-9260-2405
\] & 2.0 \\
\hline & 3 & & & & SCREW-MACH,PAN H0,8-32 \(\times 9 / 16\) & 83-9260-4552 & 2.0 \\
\hline & 4 & MS27183-7 & & MIL STD & WASHER-FLAT,RD, \(88, \mathrm{GEN}\) PURPOSE & 83-9261-4038 & 2.0 \\
\hline & 5 & 60510-4 & & AMP INC & CONTACT-ELEC, SOC, 18-22GA SIZE. & 83-1610-0927 & 1.0 \\
\hline & 6 & \(60511-4-L P\) & & \(\triangle M P\) INC & CONTACT-ELEC,PIN, . 084 UIA & 83-1610-0925 & 1.0 \\
\hline & 76 & AN7420-22 & & & CLAMP-LOUP, CABLF SPT,2.047 LG & 83-1650-0393 & 2.0 \\
\hline & 77 & & & & NUT-HEX, SM PATT,8-32 X . 313 WD & 83-9260-2203 & 2.0 \\
\hline 3 & 78 & MS 35206-245 & & MIL STD & SCREW-MACH,PAN HD,8-32 \(\times 1 / 2\) & 83-9260-4551 & 2.0 \\
\hline N & 79 & & & & WASHER-FLAT, SM PATT,\#8 & 83-9261-4035 & 2.0 \\
\hline \% & 80 & & & & WASHER-LOCK, SPLIT, HELICAL,\#8 & 83-9261-4306 & 2.0 \\
\hline \% & 81 & 230138065 & E. & MINCOM & DELAY RELAY ASSY-3 RELAYS & 83-4930-1478 & 1.0 \\
\hline 3 & 82 & MS 35207-263 & & MIL STD & SCREW-MACH, PAN HD, 10-32 X 1/2 & 83-9260-4572 & 2.0 \\
\hline N & 83 & RAA-217 & & THOM \& BETTS & SPLICE-CONOUCTOR, BUTT TYPE & 83-9630-0382 & 12.0 \\
\hline \(\dot{\sigma}\) & 86 & 230134403 & A & MINCOM & ADAPTER-SOLENOID, BRAKE, & 83-3240-0365 & 1.0 \\
\hline \(\omega\) & 87 & 230134402 & B & MINCOM & BRACKET-SUPPORT, BRAKE, 120 IPS & 83-3320-1293 & 1.0 \\
\hline & 88 & 230134404 & C & MINCOM & PAD-BRAKE, CAPSTAN MOTOR, 120 & 83-3350-0452 & 1.0 \\
\hline & 89 & 21-S-094-0437 & & STD PRSD STL & PIN-SPRING, . 094 DIAX.437LG & 83-7280-0223 & 1.0 \\
\hline & 90 & MS 16998-27 & & MIL STI) & SCREW-CAP, SOC HD, 10-32 \(\times 1 / 2\) & 83-9261-2101 & 2.0 \\
\hline & 91 & & & & SCREW-SHC, 8-32×1/4 & 83-9261-2057 & 2.0 \\
\hline & 92 & & & & WASHER-FLAT, SM PATT, \#8 & 83-9261-4035 & 2.0 \\
\hline & 93 & & & & WASHER-FLAT, SM PATT, \#10 & 83-9261-4046 & 2.0 \\
\hline & 94 & & & & WASHER-LOCK, SPLIT,HELICAL, \#8 & 83-9261-4306 & 2.0 \\
\hline & 95 & MS35338-43 & & MIL STD & WASHER-LOCK, SPLIT, HELICAL, \#10 & 83-9261-4307 & 2.0 \\
\hline & 96 & 230134405 & A & MINCOM & SPRING-RETURN, SDLENOID, BRAKE & 83-3280-0567 & 1.0 \\
\hline
\end{tabular}

REF. DES. OR FIND NO.

1
2
3
3
4

DRAWING NUMRER MFGR NAME - MFGR PART NO.

\section*{23013A160 04020.108 \\ A MINCOM} MS 35338-41

H MINCOM MIL STD

D ESCRI P T I O N

HUB ASSY-REEL, \(1 / 4\) IN TAPE
STANDOFF-CHASSIS MTG, . 875 LG WASHER-LOCK, SPLIT, \#6 SCREW-MACH,BIND \(\mathrm{H}, 6-32 \times 3 / 8\)

PH CATALOG NO. OTY.

83-4930-1884
83-3350-0022 83-9261-4305 1.0 \(83-9260-4294 \quad 1.0\)

TITLE KIT-COMMON PARTS,TAPE DECK
CATALOG NO. 83-5990-0564
\begin{tabular}{|c|c|c|c|c|c|}
\hline REF. DES. OR FIND NO. & \begin{tabular}{l}
DRAWING NUMBER \\
- MFGR PART NO.
\end{tabular} & MFGR NAME & DES CRIP T I ON & PH Catalog no. & OTY. \\
\hline DS 1,DS \(2,053, D S 4, D S 5, D S 6\) & 327 & GENERAL ELEC & LAMP-INCANDESCENT, .04 AMP & 83-1550-2506 & 6.0 \\
\hline DS 8 & 1820 & GE & LAMP - INCANDE SCENT, \(28 \mathrm{~V}, .10 \mathrm{~A}\) & 83-1550-2602 & 1.0 \\
\hline Fl & 313005. & LITTELFUSE & FUSE-SLO-HLO, 125 V 5 AMP & 83-7550-8006 & 1.0 \\
\hline L1, L2 & 42C24DC-AX & PHILLIPS CUN & SOLENOID-ELECTRICAL, PUSH/PIJLL & 83-1550-4516 & 2.0 \\
\hline L3 & 128281 & G.H. LELANO & SOLENOID-115 VDC & 83-1550-4515 & 1.0 \\
\hline L4 & 128264-001 & LEDEX & SOLENOID-ROTARY & 83-1550-4514 & 1.0 \\
\hline L5 & \(42 \mathrm{C} 24 \mathrm{DC}-A U\) & PHILLIPS CON & SOLENOID-ELECTRICAL, PUSH/PULL & 83-1550-4513 & 1.0 \\
\hline 101 & 230134002 L & MINCOM & Plate-tape Deck, transplirt & 83-3320-1027 & 1.0 \\
\hline 102 & GP 67-1 \(25 \times 500-12\) & GRUOV-PIN & PIN-GRVD,HDLS, . 125 DIAX. 500LG & 83-7280-0202 & 3.0 \\
\hline 103 & GP7-125×1000-12 & GROOV-PIN & PIN-GRVD,HIDLS,. \(125 \times 1.000 \mathrm{LG}\) & 83-7280-0212 & 1.0 \\
\hline 104 &  & GRUOV-PIN & PIN-GRND, HDLS, - 125 DIAX. 500LG & 83-7280-0484 & 3.0 \\
\hline 106 & AMF50D-FS 160 & FAFNIR & BRG-BALL, ANLR,FLNGD,. 3125 RORE & 83-1230-0178 & 6.0 \\
\hline 107 & 23013 A035 B & MINCOM & SHAFT-ARM, IJLER, TAPE TRANSPIJRT & 83-32.80-0407 & 2.0 \\
\hline 108 & 23013 BO 36 A & MINCOM & SHAFT-MTG, TAPE LIFTER & 83-3280-0536 & 1.0 \\
\hline 109 & RFF 51624 & PALNIT & NUT-HEX, STMPD,5/16-24 X - 500WD & 83-9260-2404 & 3.0 \\
\hline 114 & 1126 & BIRNRACH & SPACER-RD,\#6 SCREW SIZE, 375 L ( & 83-9350-0099 & 2.0 \\
\hline 115 & 23013 A067 B & MINCOM & ARM-ACTUATOR, TAPELIFTER & 83-3210-0253 & 1.0 \\
\hline 116 & 23013 A028 D & MINCOM & BRACKET-MTG, SOLFNOID, TPE TRANS & 83-3320-1107 & 1.0 \\
\hline 117 & 23013 A011 D & MINCOM & BRACKET-MTG, SOLENOID,RH & 83-3320-1108 & 1.0 \\
\hline 118 & 23013 A048 A & MINCOM & BRACKET-SULENOID MTG, CAPSTAN & 83-3320-1159 & 1.0 \\
\hline 119 & 23013 A047 A & MINCOM & BRACKET-SOLENIID MTG, TAPE LIFT & 83-3320-1167 & 1.0 \\
\hline 120 & 230134025 A & MINCOM & SUPPORT-DASHPOT, DOOR, HEAD COVR & 83-3340-0382 & 1.0 \\
\hline 121 & 23013 A055 A & MINCOM & SPACER-COVER PLATE, TRANSPURT & 83-3350-0414 & 2.0 \\
\hline 122 & TRUARC & MIL STD & RING-RETAINING, EXT, 225 I.0. & 83-7270-0118 & 1.0 \\
\hline 123 & \#775 & H.H. SMITH & CLAMP-CARLE,NYLON, 479 DIA & 83-7650-0058 & 1.0 \\
\hline 125 & MS35206-241 & MIL STD & SCREW-MACH,PAN HD, 8-32 \(\times 1 / 4\) & 83-92.60-4547 & 1.0 \\
\hline 126 & MS 35206-243 & MIL STD & SCREW-MACH, PAN H0,8-32 X 3/8 & 83-9260-4549 & 1.0 \\
\hline 127 & MS51017-26 & MIL STD & SETSCREW-CUP PT,6-32 \(\times 1 / 2\) & 83-9261-0051 & 2.0 \\
\hline 128 & & & SCREW-SHC, 8-32×1/4 & 83-9261-2057 & 4.0 \\
\hline 129 & MS16998-26 & MIL STD & SCREW-CAP, SOC H0, 10-32 \(\times 3 / 8\) & 83-9261-2100 & 2.0 \\
\hline 136 & 23013 A045 A & MIINCOM & SPACER-PWR SUP MTG, 1.430 LG & 83-3350-0412 & 1.0 \\
\hline 137 & 230138080 C & MINCOM & CHASSIS ASSY-WRAP AROUND, TRANS & 83-5920-1332 & 1.0 \\
\hline 138 & MS 35206-217 & MIL STO & SCREW-MACH, PAN HD, 4-40 \(\times 1 / 2\) & 83-9260-4517 & 4.0 \\
\hline 139 & MS35206-237 & MIL STD & SCREW-MACH, PAN HD,6-32 X 1.750 & 83-926()-4544 & 1.0 \\
\hline 140 & \(23013 A 172\) B & MINCOM & BRACKET ASSY-PHOTOCELL & 83-4320-1679 & 1.0 \\
\hline 146 & 23013 A044 A & MINCOM & SPRING-RETURN, IDLER ARM, CAPSTN & 83-3280-0422 & 3.0 \\
\hline 147 & 23007 A 054 A & MINCOM & SPRING-SHOCK ARSORBING-IDLER & 83-3280-0542 & 1.0 \\
\hline 148 & 23013A090-1 A & MINCOM & ARM ASSY-IDLER,ROLLER,LH & 83-4210-0230 & 1.0 \\
\hline 149 & 23013A090-2 A & MINCOM & ARM ASSY-IDLER,RกLLER,RH & 83-4210-0231 & 1.0 \\
\hline
\end{tabular}

REF. DES. OR FIND NO.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 150 & 23007A050-1 & K & MINCOM & ARM ASSY-IDLER, ACTUATING,RH & 83-4210-0232 \\
\hline 151 & 23007A050-2 & K & MINCOM & ARM ASSY-IDLER, ACTUATING, LH & 83-4210-0256 \\
\hline 152 & & & RUBBERCRAFT & BUMPER-RUB, SLV, . 125 ID X . 313 & 83-7230-0337 \\
\hline 153 & & & MIL STD & RING-RETAINING, TYPE E, 1/4 ID & 83-7270-0413 \\
\hline 154 & 21-S-094-0437 & & STD PRSD STL & PIN-SPRING, .094 DIAX.437LG & 83-72.80-0223 \\
\hline 155 & 6593 & & BIRNBACH & INSULATOR-WASH, NYLON,.016 TK & 83-9630-027? \\
\hline 156 & \(23013 A 074\) & B & MINCOM & BUMPER-RUB SLV,.06 ID X . 310 L G & 83-3230-0390 \\
\hline 157 & 230134073 & A & MINCOM & SPACER-MACHINED, DAMPENER, TEF & 83-3230-0391 \\
\hline 161 & 303-85-15-1.25 & & ELEC REGULTR & DASHPOT-AIR DAMPINING CYLINDER & 83-1270-0491 \\
\hline 162 & 230134046 & C & MINCOM & ARM-DAMPENING, IDLER & 83-3210-0223 \\
\hline 163 & 5555-12 & & TRUARC & RING-RETNG, EXT, . 120 ID & 83-7270-0503 \\
\hline 166 & 303-85-15-1000 & & ELEC REGULTR & DASHPOT-AIR DAMPINING CYLINDER & 83-1270-0490 \\
\hline 167 & 230134095 & B & MINCOM & ARM ASSY-ACTUATOR, DOOR HD CVR & 83-4210-0237 \\
\hline 171 & MS35206-213 & & MIL STD & SCREW-MACH, PAN HD, 4-40 X \(1 / 4\) & 83-9260-4513 \\
\hline 172 & & & & SETSCREW-LGLK, HEX, CUP, 10-32 1 。 & 83-9261-0271 \\
\hline 174 & J-7219-8 & & LORD & MOUNT-RESILIENT, RUBBER & 83-1320-1096 \\
\hline 175 & 230134068 & A & MINCOM & BRACKET-VERTICAL MTG, TRANSPORT & 83-3320-1675 \\
\hline 177 & 23007 A070 & C & MINCOM & BRKT ASSY-MOTOR MTG, CAPS DRIVE & 83-4320-1476 \\
\hline 178 & 230124000 & A & MINCOM & BRACKET ASSY-VERNIER SPEED ADJ & 83-4930-1002 \\
\hline 179 & MS16998-31 & & MIL STD & SCREW-SHC, 10-32×1 & 83-9261-2105 \\
\hline 180 & NAS1352-06 & & NYLOK CORP & SCREW-CAP, SOC H0,6-32 \(\times 1.00\) & 83-9261-2135 \\
\hline 181 & MS35690-602 & & MIL STD & NUT-HEX,PLAIN, 3/8-16 X . 563 WD & 83-9260-2011 \\
\hline 182 & AN960-616 & & AN STANDARD & WASHER-FLAT, GENERAL PURP, \#3/8 & 83-9261-4015 \\
\hline 183 & MS35333-42 & & MIL STD & WASHER-LOCK,FLAT, INT T,\#3/8 & 83-9261-4211 \\
\hline 186 & 01123060 & & REVERE & HUB ASSY-REEL,MODEL 23 & 83-1930-0959 \\
\hline 188 & \(23004 \mathrm{A000}\) & F & M INCOM & MUTOR ASSY-TAKE UP REEL & 83-4560-0090 \\
\hline 189 & 23004A050 & B & MINCOM & MOTOR ASSY-REWIND,REEL & 83-4560-0092 \\
\hline 191 & \(23013 A 085\) & A & MINCOM & CONN-PLUG, SHOR TING, TAPE TRANS & 83-4610-1136 \\
\hline 192 & \(23013 B 060\) & G & MINCOM & P.C. BD ASSY-LOGIC TRANSPORT & 83-4930-1716 \\
\hline 196 & 185-1873 & & DIALCO & LENS-CAP ASSY,1/2 IN SQ,AMBER & 83-1550-5243 \\
\hline 197 & 185-1872 & & DIALCO & LFNS-CAP ASSY,1/2 IN SQ,GREEN & 83-1550-5244 \\
\hline 199 & 230134004 & B & M INCOM & COVER-LAMP, DECORATIVE & 83-3310-0833 \\
\hline 200 & 16049A015-3 & L & MINCOM & LENS-INDICATOR LIGHT, *REWIND* & 83-3550-1207 \\
\hline 201 & 16049A015-4 & L & M INCOM & LENS-INDICATOR LIGHT, *FORWARD* & 83-3550-1208 \\
\hline 202 & 23013A005 & C & MINCOM & LENS-LAMP, TAPE SENSOR & 83-3550-1406 \\
\hline 203 & 23013 A027 & C & M INCOM & LENS-LIGHTED SWITCH, PUSHBUTTON & 83-3550-1408 \\
\hline 204 & 23013A038-1 & E & MINCOM & LENS-IND LT, ENGRAVED STOP & 83-3550-1417 \\
\hline 205 & 16049A015-35 & L & MINCOM & LENS-INDICATOR LIGHT, \%RECORD* & 83-3550-1436 \\
\hline 206 & 16049A015-36 & L & MINCOM & LENS-INDICATOR LIGHT, \(\sim\) PLAY* & 83-3550-1437 \\
\hline 207 & DK-153 & & GASKET MFG & STRIP-GASKET MATL, \(3 / 8 \times 1 / 32\) & 83-1190-0073 \\
\hline 208 & & & MIL STD & SCREW-MACH,OVAL HD, 6-32 \(\times 7 / 8\) & 83-9261-4340 \\
\hline 216 & 17460 S & & RELDON & CABLE ASSY-PWR, ELEC, 10 FT LG & 83-1570-0303 \\
\hline
\end{tabular}
1.0
1.0
1.0
. 0
3.0
5.0
1.0
1.0
. 0
3.0
. 0
. 0
.0
. 0
1.0
. 0
1.0
. 0
. 0
. 0
1.0
1.0
. 0
1.0
2.0
. 0
. 0
1.0
1.0
1.0
.0
. 0
1.0
1.0
2.0
1.0
. 0
1.0
1.0
1.0
1.0
1.0
4.0
. 0


TITLE .KIT-COMNON PARTS,TAPE DECK
CATALOG NO. 83-5990-0564

REF. DES. OR FIND NO.
217
218
219
220
221
222
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

218 219 220 221 222 231 232 233 234 235 236

DRAWING NUMBER MFGR NAME - MFGR PART NO.
\begin{tabular}{|c|c|c|}
\hline 230074001 & A & M INCOM \\
\hline 230134015 & D & MINCOM \\
\hline 23013 A032 & E & MINCOM \\
\hline 230134007 & B & MINCOM \\
\hline MS24693-S272 & & MIL STI \\
\hline MS 35190-240 & & MIL STO \\
\hline MS 35206-215 & & MIL STD \\
\hline MS35206-228 & & MIL STD \\
\hline MS 35207-261 & & MIL STD \\
\hline MS 35338-40 & & MIL STD \\
\hline MS35338-41 & & MIL STI \\
\hline MS35338-43 & & MIL STD \\
\hline MS 35190-223 & & MIL STD \\
\hline 00000A741-3 & E & MINCOM \\
\hline
\end{tabular}

COVER-HEAD,MODEL 23
COVER-C AP STAN, RH, DECORATIVE COVER-CAPSTAM, LH, DECORATIVE BRACKET-MTG,TAPE DECK
SCREW-MACH,FH,10-32 X 1/2
SCREW-MACH,FH,6-32 X \(3 / 4\)
NUT-HEX, SM PATT, 8-32 X . 313 WD
SCREW-MACH, PAN HD,4-40 \(\times 3 / 8\)
SCREW-MACH,PAN HD,6-32 \(\times 3 / 8\) SCREW-MACH,PAN HD,10-32 \(\times 3 / 8\) WASHER-FLAT,GENERAL PURPSE, \# 10 WASHER-FLAT,. 219 OD X. 125 ID WASHER-FLAT, SM PATT,\#6 WASHER-FLAT, SM PATT, \#6
WASHER-FLAT,SM PATT, \#8 WASHER-FLAT,SM PATT, \#10 WASHER-LOCK,SPLIT,HELICAL,\#4 WASHER-LOCK, SPLIT, \#6 WASHER-LOCK, SPLIT,HELICAL, \#8 WA SHER-LOCK, SPLIT,HELICAL, \#10 SCREW-MACH,FH,4-40.X 3/8
LABEL-IDENT,PATFNT, MOD 23 LABEL-IDENTIFICATION, MODULE

Ph CATALUG NO. QTY.

83-3310-0832 1.0 83-3310-0834 1.0 83-3310-0835 1.0 83-3320-1114 2.0 83-9260-6294 83-9260-6522 83-9260-2203 83-9260-4515 83-9260-4531 83-9260-4570 83-9261-4006 83-9261-4012 83-9261-4013 83-9261-4035 83-9261-4046 83-9261-4303 83-9261-4305 83-9261-4306 83-9261-4307 83-9260-6504 83-3550-1500 83-3550-1621

REF．DES．OR FIND NO．
DS 1, DS 2, DS \(3, D S 4\), DS5
DS 6

P1
S1，S2，S3，S4，S5
S6，S7


DR AWING NUMBER －MFGR PART NO．
\begin{tabular}{|c|c|c|c|c|c|}
\hline 327 & & GFNERAL ELEC & LAi：i－I＇．CAIDESCENT，．04 Airr & 93－155c－2506 & 5.0 \\
\hline 380672－4 & & All I INC & LIGHT ASSY－PILOT，A，E！，24VOLTS & ก3－1550－2590 & 1.0 \\
\hline 201359－3 & & AMP I＇＇C． & SHELL－CONN，RECT， 26 POSITICN： & \(33-1610-0674\) & 1. \\
\hline 1018 P & & PEUDAR & S！IITCH－PUSHBUTTON，SPDT，FOMENTY & 83－1550－5177 & ． \\
\hline 513－0101－604 & & DIALCい & S－ITCH－：Nii：ENTARY，IAKF & 83－155c－5733 & 2. \\
\hline \(23017 \mathrm{AOO1}\) & & M INCOiA & PAUEL－SIUITCH，\(\because \because \cap D E\) CONTROL & 83－3360－0275 & 1. \\
\hline 230174002 & & MINCOM & HRUSING－MODE CONTRCL & 83－3310－1039 & 1 \\
\hline 230174003 & C & M INCOI－ & CHASSIS－SHITCH，MODE CONTROL & 93－3310－1040 & 1. \\
\hline 42980－1－LP & 4 & AMP INC & PIN－CONTACT，CONN，20－24 GA IRE & こ3－1610－（if）38 & 15. \\
\hline 42452－1 & & AMP INC & COMT－ELECT，SOCKET CLIP，． 220 HD & ¢こ－161\％－08．47 & 2. \\
\hline 201923－1 & & AMP INC & CLIP－SPRING TENSION，MALE & 93－162（－0126 & 1. \\
\hline 201229－1 & & AMP INC & CLAMP－ELEC，STRAIN REL， 779 MCE & 83－1650－0244 & 1 \\
\hline 00000A769 & C & MINCOM & LABEL－IDENTIFICATION，POODULE & 53－355（1－1621 & 1. \\
\hline 200389－4 & & AMP INC & PIN－GUIDE，CENTER，AIAP SERIES H & 83－7200－019t & 1. \\
\hline TY 15 & & THOMS \＆BETS & CLAMP－LOOP，NYLUN TYRAP， 7.81 LG & － \(\mathbf{3}-7650-0.056\) & 1. \\
\hline 8748 & & BELDEN & WIRE－TYPE 8748， \(22 \mathrm{GA,18COTDUC}\) & 83－7910－0534 & AP \\
\hline 200390－4 & & AMP INC & RECP－GUIDE PIN，CEMTER，SERIES M & \(: 3-7270-1302\) & ］． \\
\hline \＃7 & & RUBBERCRAFT & GROFAFE T－RUBEER，． \(37510 \times .687\) CD & 83－6630－1097 & 1 \\
\hline MS 35206－229 & & MIL STI） & SCREII－\(\because\) ACH，PAN HD，6－32 \(\times 7 / 16\) & バー 260－4532 & \\
\hline MS24693－S25 & & MIL STI） & SCRE：H－HACH！FH，6－32 X 5／16 & －3－9260－6555 & 2 \\
\hline MS 35338－41 & & MIL STO & HASHER－LIICK，SPLIT，\＃6 & i． \(2-201-4305\) & \\
\hline & & & WASHER－FLAT，Si PATT，\＃6 & 83－¢261－4013 & 5 \\
\hline 16049A015－3 & L & MINCOM & LENS－INDICATIIR LIGHT，\(*\) RE！IFO\％ & 83－355（－1207 & 1. \\
\hline 16049A015－4 & L & M INCOM & LENS－INDICATCIR LIGHT，＊FORVARD＊ & 83－3550－120： & 1.0 \\
\hline 16049A015－35 & L & MINCOM & LENS－INDICATOR LIGHT，＊RECORD＊ & 23－3550－1430 & 1. \\
\hline 16049A015－36 & L & MINCOM & LENS－INDICATIR LIGIIT， \(\operatorname{*PLAY}\)（ & 8．3－3550－14．37 & 1. \\
\hline 23013A038－1 & F & MINCOM & LENS－IND LT，EHGRAVFD STOP & ！3－3，55：－1417 & 1 \\
\hline 185－1873 & & DIALCD & LENS－CAP ASSY，1／2 If：SQ，AFPER & \(83-1550-5243\) & 1. \\
\hline 185－1872 & & DIALCO & LENS－CAP ASSY，1／7 IT S S ，GREEi： & 83－15ち－524 & 1. \\
\hline
\end{tabular}


Figure 48. Remote Control Assembly

TITLE CABLE ASSY－FXT，REMOTE CONTROL
CATALOG NO • 83－4570－0428

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline REF. DES. OR FIND NO. & \multicolumn{2}{|l|}{\begin{tabular}{l}
DRAWING NUMBER \\
- MFGR PART NO.
\end{tabular}} & MFGR NAME & DESSCRIP T I O N & PH & CATALOG NO. & OTY. \\
\hline C1 & TSD5-35-156 & & COMP INC & CAP-FXD, TA, 15UF 35 V 20\% & & 83-1510-6209 & 1.0 \\
\hline CR1, CR2 & 1 N4002 & & MOTOROLA & RECT-SI, SEMICOND, 100PIV, 1 A & & 83-1530-0122 & 2.0 \\
\hline DS 1,DS 2,DS 3,DS4, DS5 & 327 & & GENERAL ELEC & LAMP-INCANDESCENT, . 04 AMP & & 83-1550-2506 & 5.0 \\
\hline DS6 & 380672-4 & & AMP INC & LIGHT ASSY-PILOT, AMBER, 24 VOLTS & & 83-1550-2590 & 1.0 \\
\hline \[
\begin{aligned}
& \text { DS7,DS8,DS9,DS10,DS11,DS12, } \\
& \text { DS13,DS14,DS15,DS16,DS17, } \\
& \text { DS18,DS } 19, \text { DS } 20, \text { DS21,DS22 }
\end{aligned}
\] & L-28/40 & & MURA & LAMP-PANEL ASSY, 28 V 40 MA & & 83-1550-2603 & 16.0 \\
\hline P1 & 201359-3 & & AMP INC & SHELL-CONN, RECT, 26 POSITIONS & & 83-1610-0674 & 1.0 \\
\hline P2 & 200512-3 & & AMP INC & SHELL-CONN, RECT, 26 POSITIONS & & 83-1610-0663 & 1.0 \\
\hline R1 & 04781-7220 & & MINCOM SPEC & RES-FXD,FILM, 220 OHM, 1/2W, 2\% S & & 83-1520-7220 & 1.0 \\
\hline S1,S2,S3,S4,S5 & 1018 P & & PENDAR & SWITCH-PUSHBUTTON, SPDT, MOMENTY & & 83-1550-5177 & 5.0 \\
\hline S6,57 & 513-0101-604 & & DIALCO & SWITCH-MOMENTARY, MAKE & & 83-1550-5233 & 2.0 \\
\hline S8,S9,S 10, S11,S12,S13, S14, & 1454 & & CENTRALAB & SWITCH-LEVER, WAFER TYPE, 2P3POS & & 83-1550-0031 & 8.0 \\
\hline S16 & DP7 & & TORSION BAL & SWITCH-TOGGLE, DPDT, 5 AMP & & 83-1550-5061 & 1.0 \\
\hline 1 & 23017A101 & \(B\) & M INCOM & PANEL-FRONT, CONT, REMOTE SYNC & & 83-3360-1206 & 1.0 \\
\hline 2 & 23017 A102 & A & MINCOM & HOUSING-CONT, REMOTE SYNC & & 83-3310-1248 & 1.0 \\
\hline 3 & 230174003 & C & MINCOM & CHASSIS-SWITCH, MODE CONTROL & & 83-3310-1040 & 1.0 \\
\hline 4 & 00000A773-1 & A & MINCOM & KNOB-SWITCH LEVER, STAMPED \#1 & & 83-3270-0664 & 1.0 \\
\hline 5 & 000004773-2 & A & MINCOM & KNOB-SWITCH LEVER, STAMPED \#2 & & 83-3270-0665 & 1.0 \\
\hline 6 & 00000A773-3 & A & M INCOM & KNOB-SWITCH LEVER, STAMPED \#3 & & 83-3270-0666 & 1.0 \\
\hline 7 & 00000A773-4 & A & MINCOM & KNOB-SWITCH LEVEF, STAMPED \#4 & & 83-3270-0667 & 1.0 \\
\hline 8 & 00000A773-5 & A & MINCOM & KNOB-SWITCH LEVER, STAMPED \#5 & & 83-3270-0668 & 1.0 \\
\hline 9 & 00000A773-6 & A & MINCOM & KNOB-SWITCH LEVER, STAMPED \#6 & & 83-3270-0669 & 1.0 \\
\hline 10 & 00000A773-7 & A & MINCOM & KNOB-SWITCH LEVER, STAMPED \#7 & & 83-3270-0670 & 1.0 \\
\hline 11 & 00000A773-8 & A & MINCOM & KNOB-SWITCH LEVFR, STAMPED \#8 & & 83-3270-0671 & 1.0 \\
\hline 12 & 16049A015-3 & L & M INCOM & LENS-INDICATOR LIGHT, *REWIND* & & 83-3550-1207 & 1.0 \\
\hline 13 & 16049A015-4 & L & MINCOM & LENS-IND ICATOR LIGHT, \%FORWARD* & & 83-3550-1208 & 1.0 \\
\hline 14 & 16049A015-35 & L & MINCOM & LENS-INDICATOR LIGHT, *RECORD* & & 83-3550-1436 & 1.0 \\
\hline 15 & 16049A015-36 & L & M INCOM & LENS-INDICATOR LIGHT,*PLAY* & & 83-3550-1437 & 1.0 \\
\hline 16 & 23013A038-1 & E & M INCOM & LENS-IND LT, ENGRAVED STOP & & 83-3550-1417 & 1.0 \\
\hline 17 & 185-1873 & & DIALCO & LENS-CAP ASSY, \(1 / 2\) IN SQ, AMBER & & 83-1550-5243 & 1.0 \\
\hline 18 & 185-1872 & & D IALCO & LENS-CAP ASSY, \(1 / 2\) IN SQ,GREEN & & 83-1550-5244 & 1.0 \\
\hline 19 & & & & WASHER-FLAT, SM PATT, \#6 & & 83-9261-4013 & 4.0 \\
\hline 20 & 42980-1-LP & 4 & AMP INC & PIN-CONTACT, CONN, 20-24 GA WIRE & & 83-1610-0688 & 18.0 \\
\hline 21 & 42452-1 & & AMP INC & CONT-ELECT, SOCKET CLIP, . 220 WD & & 83-1610-0847 & 2.0 \\
\hline 22 & 201923-1 & & AMP INC & CLIP-SPRING TENSION, MALE & & 83-1620-0126 & 1.0 \\
\hline
\end{tabular}

TITLE CONTROL ASSY-REMOTE, SYNC
CATALIJG NO. 83-5920-1493

REF. DFS. OR FIND NO.

DRAWING NUMBFR
- MFGR PART NTI.
\begin{tabular}{ll}
\(201229-1\) & \\
AMP INC \\
\(000004662-1\) & C MINCOM \\
\(200389-4\) & AMP INC \\
MS 35206-227 & MIL STD \\
8748 & RELDEN \\
\(200390-4\) & AMP INC \\
SR-9P-1 & HEYMAN \\
\(8070-E\) & LERCO \\
\(3935-10\) & CAMBION \\
C12008-020 & TINNERMAN \\
& MURA \\
& MURA \\
MS24693-S24 & MIL STD \\
MS 35338-41 & MIL STD \\
\(42981-1-L P\) & BM AMP INC \\
\(201924-1\) & AMP INC
\end{tabular}

CLAMP-ELEC, STRAIN REL .779 MCE LABEL-IDENT,ASSY
PIN-GUIDE, CENTER,AMP SERIES M SCREW-MACH,PAN HD,6-32 \(\times 5 / 16\) WIRE-TYPE 8748, 22 GA,18CUNDUC RECP-GUIIIE PIN,CENTER,SERIES M BUSHING-STRAIN RELIEF, CABLE SPACER-SLV, HEX, TAP, . 500 LG SPACER-THD 6-32. 250 HEX 7/8 L NUT-SHEET SPRING, LENS-CAP, INDICATOR, GREEN LENS-INDICATOR LIGHT, CAP, RED SCREW-MACH,FH,6-32 X . 250100 WASHER-LOCK, SPLIT, \#6
BUMPER-RUB, ADHESIVE MTG,. 50 SO SOCKET-CONTACT,CONN, SIZE 16 CLIP-SPG TENS,POSITION LOCKING

83-1650-0244 83-3550-1 276 83-7280-0196 83-9260-4530 83-7910-0534 83-7270-0302 83-1690-0337 1.0 83-9350-0063 83-9350-0580 2.0 83-9260-0115 16.0 83-1550-1618 8.0 83-1550-1616 8.0 83-9260-6571 20.0 83-9261-4305 4.0 83-1230-0449 4.0 83-1610-0689 18.0 83-1620-0127 1.0

REF. DES. OR FIND ND.


DRAWING NUMBER MFGR NAME D E S C R I P T I O N - MFGR PART NO.

\section*{ALLMETAL}

23028A010 23028A035-1 23028 A002 23028 A043 230284001 000004759 23028A005 23028A044 23028A015-1 00000A627-10 MS35649-42 MS 35649-82 MS24693-S51 MS 24693-S6 MS35338-42 AN 960-4L
AN960-8L MS 35338-40
\begin{tabular}{ll}
23000 A901 & D MINCOM \\
23028 A116 & A MINCOM \\
23028 A114 & C MINCOM \\
\(23028 A 115\) & A MINCOM \\
\(\# 9\) & DUCOMMUN \\
MS24665-216 & \\
MS 35494-629 & \\
MS35207-263 & MIL STD \\
H31U58 & HUNTER SPR \\
\(23028 A 112\) & MINCOM \\
MS35338-43 & MIL STD \\
AN960-516L & AN STD \\
MS35650-102 & MILSTD \\
MS24665-208 & MIL STD
\end{tabular}

PIN-DOWEL. \(250 \times 1.250\) HINGE-P IVOT, CABINET, CONSOLE CABINET-ENCLOS,CONSLE,WAL VEN BRKT-MTG, CABINET
BRKT-SUP, CARINET
TRIM-BAR, CARINET
PLATE NANE UNIVERSAL
SUPPORT-TRANSPORT, CABINET SPACER-PLATE, TRANSPORT SUP PANEL-FILLER,CARINET ABEL-I.D., M-23, PROFFESION REC NUT-HEX,PLAIN,4-40 X. 250 WD NUT-HEX,PLAIN, 8-32 X . 344 WD SCREW-MACH,FH,8-32 X .625
SCREW-MACH,FH,4-40 X 1/2
WASHER-LOCK, SPLIT,HELICAL, \#8 WASHER-FLAT, LIGHT SERIES,\#4 WASHER-FLAT, LIGHT SERIES, \#8 WASHER-LOCK, SPLIT,HELICAL, \#4 SCREW-WOOD, RND HD \#8 \(\mathrm{X} 7 / 8\) SCREW-WOOD, RND HD \#8 \(\times 1.00\) SCREW-WOOD, RND HD \#10 \(\times 7 / 8\) KIT-INSTALLATION MTG TRANSPORT SHAFT-SPRING, COUNTER BALANCE WASHER-SPRING, COUNTER BALANCE SPACER-SPRING,COUNTER BALANCE PLATE-MOUNTING, FLANG, \(3 / 4\) THD PIN-COTTER,.078 DIA \(\times 11 / 2\) LG SCREW-WOOD, FLAT HD, 16-9, \(11 / 4\) SCREW-MACH,PAN HD, 10-32 X 1/2 WASHER-FLAT,GENERAL PURPSE,\#10 SPRING-EXTENSION,. 031 THKX 2 WD ARM-SUPPORT, COUNTER BALANCE WASHER-LOCK, SPLIT, HELICAL, \# 10 WASHER-FLAT,LIGHT SERIES,\#5/16 NUT-HEX,PLAIN,10-32 X . 375 WD PIN-COTTER,. 078 DIA \(X .500\) LG

83-1280-0225 83-3270-0560 83-3310-0840 83-3320-1415 83-3320-1420 83-3330-0314 83-3330-0336 83-3340-0500 83-3350-0474 83-3360-0932 \(83-3550-1482\) 83-9260-2003 83-9260-2006 83-9260-6563 83-9260-6572 83-9261-4020 83-9261-4024 83-9261-4042 83-9261-4303 83-9262-0556 83-9262-0557 83-9262-0558 83-5990-0415 83-3280-0614 83-3261-4350 83-3350-0541 83-1 320-1705 83-7280-0617 83-9260-0056 83-9260-4572 83-9261-4006 83-1280-0616 83-3210-0287 83-9261-4307 83-9261-4014 83-9260-2107 83-7280-0322
2.0
2.0
1.0
2.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
3.0
4.0
4.0
3.0
4.0
3.0
14.0
3.0
4.0
6.0
3.0
1.0
1.0
2.0
12.0
1.0
2.0
4.0
2.0
2.0
1.0
1.0
2.0
1.0
2.0
1.0
2. 1. .0 . 0 1.0 1.0 . 0 1.0 1.0 3.0 . 0 3.0 4.0 3.0 14.0 3.0 4.0 3.0 1.0 2.0 12.0 1.0 2.0 4.0 . . 1.0 2.0 2.0 1.0

TITLE CABLE ASSY－PWR，4TRK，36 IN
CATALOG NO．83－4570－0346

REF．DES．OR FIND NO．

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

DRAWING NUMRER
－MFGR PART ND．
\begin{tabular}{ll} 
60511－4－LP & AMP INC \\
\(1-480278-0\) & AMP INC \\
\(1-480324-0\) & AMP INC \\
& NATL WIRE WIRE \\
& NATL WIRE \\
& NATL WIRE \\
\(3025-070-5 / 16 I D\) & \(3 M\) \\
NB1934N2SJ & NATL WIRE \\
GSBI34C & THOM EBETTS \\
GSC194C & THOMASEBETTS
\end{tabular}

GSB134C
GSC 194 C

CONTACT－ELEC，PIN，． 084 DIA SHELL－CONN，RECT， 12 POSITIONS SHELL－CONN，RECT， \(15 P O S I T I O N\) WIRE－PVC，TYPE R，22GA YELLOW WIRE－TYPE R， \(22 G A\) VIO NYLON JKT WIRE－PVC，TYPE R，22GA GRAY WIRE－TYPE B，22GA BLU NYLUN JKT
WIRE－TYPE B，22GA BLK NYLON JKT WIRE－TYPE B，22GA，GRN NYLN JKT WIRE－TYPE B，22GA RED NYLUN JKT WIRE－TYPE B， \(22 G A, B R N\) NYLN JKT TUBING－SCOTCHTITE，CLEAR VINYL WIRE－TYPE B，22GA RED／BLU 2 CON FERRULE－RF CABLE GND－ 134 ID
MFGR NAME

FERRULE－RF CABLE GROUNDING
WIRE－TYPE B， 22 GA ORNG NYL JKT

PH CATALOG NO．OTY．

83－1610－0925 83－1610－0931 83－1610－093 83－7910－0040 83－7910－0041 83－7910－0042 83－7910－0044 83－7910－0045 83－7910－0248 83－7910－0249 83－7910－0251 83－7910－0279 83－7910－0362 83－9690－0020 83－9690－0118 83－7910－0250

TITLE CABLE ASSY-PWR, 4 TRK, 66 IN
CATALOG NO. 83-4570-0380

REF. DES. OR FIND NO.
DRAWING NUMBER
MFGR NAME
DESCRIPTION
h Catalog no.
OTY.
- MFGR PART Nח.

60511-4-LP
1-480278-0
\(1-480324-0\)
AMP INC
AMP INC AMP INC NATL WIRE NATL HIRE NATL WIRE NATL WIRE NATL WIRE NATL WIRE NATL WIRE NATL WIRE

CONTACT-ELEC,PIN, . 084 DIA SHELL-CONN, RECT, 12 POSITIONS SHELL-CONN, RECT, 15POSITION WIRE-PVC, TYPE R, 22GA YELLOW WIRE-TYPE B,22GA VIO NYLON JKT WIRE-PVC, TYPE R, 22GA GRAY WIRE-TYPE B, 22GA RLU NYLON JKT WIRE-TYPE B, 22GA BLK NYLON JKT WIRE-TYPE B, 22GA,GRN NYLN JKT WIRE-TYPE B,22GA RED NYLON JKT WIRE-TYPE B, 22GA,RRN NYLN JKT TUBING-SCOTCHTITE, CLEAR VINYL WIRE-TYPE B, 22GA RED/BLU 2 CON
3025-070-5/16ID 3M
NATL WIRE WIRE-TYPE B, 22GA RED/BLU 2 CON
NB 1934 N2S
GSB134C
GSC194C

FERRULE-RF CABLE GND GULE-RF CABIF GROUNDING \(\begin{array}{ll}\text { THOMAS\&BETTS FERRULE-RF CABLE GROUNDING } \\ \text { NATL WIRE } & \text { WIRE-TYPE B, } 22 \text { GA ORNG NYL JKT }\end{array}\) NATL WIRE

83-1610-0925 51.0 83-1610-0931 1.0 83-1610-0933 4.0 83-7910-0040 AR 83-7910-0041 AR 83-7910-0042 AR 83-7910-0044 AR 83-7910-0045 AR 83-7910-0248 AR 83-7910-0249 AR 83-7910-0251 AR 83-7910-0279 AR 83-7910-0362 AR 83-9690-0020 8.0 83-9690-0118 8.0 83-7910-0250

TITLE CABLE ASSY－PWR，8 TRK， 36 IN
CATALOG NO．83－4570－0347

REF．IFS．OR FIND NO．


ORAWING NIIMRER
－MFGR PART NO．
60511－4－LP AMP INC 1－480278－0 AMP INC \(1-480324-0\) \(\triangle M P\) INC

NATL WIRE NATL WIRE
NATL WIRE
NATL WIRE
NATL WIRE
NATL WIRE
NATL WIRE NATL WIRE NATL HIRE
3025－070－5／16ID
NB1934N2SJ
GSB134C
GSC 194 C
TYPE YOE－91

3M
NATL WIRE

\section*{THOM \＆RET}

THOMASEBETTS NATL WIRE RURNDY

CUNTACT－ELEC，PIN，． 084 DIA SHELL－CONN，RECT， 12 POSITIONS SHELL－CONN，RECT， \(15 P O S I T I O N\) WIRE－PVC，TYPE B，22GA YELLOW WIRE－TYPE R，22GA VIO NYLON JKT WIRE－PVC，TYPE R，22GA GRAY WIRE－TYPE R，22GA BLU NYLON JKT WIRE－TYPE B，22GA RLK NYLON JKT WIRE－TYPE B，22GA，GRN NYLN JKT WIRE－TYPE B，22GA RED NYLIN JKT WIRE－TYPE B，22GA，BRN NYLN JKT TUBING－SCOTCHTITE，CLEAR VINYI WIRE－TYPE B，22GA RED／BLU 2 CON FERRULE－RF CARLF GND ． 13410 FERRULE－RF CABLE GROUNDING WIRE－TYPE R， 22 GA ORNG NYL JKT SPLICE－ELECTRICAL CONDUCTOR

PH CATALOG NO．OTY．

83－1610－0925 91．0
83－1610－0931 1．0 83－1610－0933 8．0 83－7910－0040 AR 83－7910－0041 AR 83－7910－0042 AR 83－7910－0044 AR 83－7910－0045 AR 83－7910－0248 AR 83－7910－0249 83－7910－0251 83－7910－0279 83－7910－0362 83－9690－0020 16．0 83－9690－0118 16．0 83－7910－0250 AR 83－9630－0470 1．0

REF. DES. OR FIND NO. 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

DRAWING NUMBER MFGR NAME DRAWING NUMBER MFGR NAME D E S C R I P T I O N CONTACT-ELEC,PIN, . 084 DIA SHELL-CONN,RECT, 12 POSITIONS SHELL-CONN, RECT, 15POSITION WIRE-PVC,TYPE R, \(22 G A\) YELL \(\cap W\) WIRE-PVC, TYPE R, \(22 G A\) YELL NW
WIRE-TYPE B, \(22 G A\) VIO NYLON JKT WIRE-PVC, TYPE R, 22GA GRAY WIRE-TYPE B,22GA RLU NYLON JKT WIRE-TYPE B,22GA BLK NYLON JKT WIRE-TYPE B, 22GA,GRN NYLN JKT WIRE-TYPE R, 22GA RED NYLON JKT WIRE-TYPE B, 22GA, BRN NYLN JKT TUBING-SCOTCHTITE,CLEAR VINYL
3025-070-5/16ID 3M
NB1934N2SJ
GSB134C
GSC 194 C

AMP INC
AMP INC AMP INC
NATL WIRE
NATL WIRE NATL WIRE NATL WIRE
NATL WIRE
NATL WIRE
NATL WIRE
NATL WIRE 3M
NATL WIRE
THUM \& BETT THOMAS\&BETTS NATL WIRE WIRE-TYPF B, 22GA RFD/BLU 2 CON WIRE-TYPE B,22GA RED/BLU 2 CON EERRULE-RF CABLE GND . 134 WIRE-TYPE B, 22 GA ORNG NYL JKT

PH CATALOG NO. OTY.

83-1610-0925 83-1610-0931 83-1610-0933 83-7910-0040 83-7910-0041 83-7910-0042 83-7910-0044 83-7910-0045 83-7910-0248 83-7910-0249 AR 83-7910-0251 AR 83-7910-0279 AR 83-7910-0362 83-9690-0020 16.0 83-9690-0118 16.0 83-7910-0250 AR

TITLE DISPLAY ASSY-METER, 4 RAY
CATALOG NO. 83-5920-1126

REF. DES. OR FIND NO.


DRAWING NUMBER - MFGR PART NO.

MS 35338-41 23028 A075

AN505-8R9

MINCUM
A MINCOM MINCOM MINCOM
A MINCOM MINCOM MIL STO MIL STI) MIL STD

MIL STD MIL STO \(A \& N S T D\) AEN STD MIL STD C MINCOM

MFGR NAME
D
ESCRIPTIDN

HOUSING DISPLAY,METER,MOD 23 COVER ASSY-OISPLAY PANEL SUPPORT-ANGULAR, CABINET SUPPORT-ANGULAR, CABINET PANEL-FILLER, SUPPORT, HOUSING PANEL-HSG, DISPLAY, METER NUT-HEX,PLAIN,6-32 X • 313 WD NUT-HEX,PLAIN,8-32 X . 344 WD SCREW-MACH,PAN HD,6-32 \(\times 7 / 16\) SCR-MACH,F HD, 8-32 \(\times 1 / 2\) SCREW-MACH,FH,6-32 X.500 WA SHER-LOCK, SPLIT,HELICAL, \#8 WASHER-FLAT,LIGHT SERIES,\#6 WASHER-FLAT, LIGHT SERIES,\#8 WASHER-LOCK, SPLIT, \#G WASHER-LOCK, SPLIT, \#h
HARNESS ASSY-METER, REMOTE HARNESS ASSY-METER, REMOTE
SCREW-WOOD, RD HD,\#6 \(\times 7 / 8\) SCREW-WOOD, RD HD, \# \(10 \times 1.00 L G\) WASHER-FLAT,GENFRAL PURPSE, \#10 SCREW-MACH,FH,8-32 \(\times 9 / 16\)

PH CATALOG NO. QTY.

83-3310-099 83-3310-1157 83-3340-0522 83-3340-0523 83-3360-0934 1.0 \(\begin{array}{rr}1.0 \\ 83-9260-2005 & 20.0\end{array}\) 83-9260-2006 8.0 83-9260-4532 2.0 83-9260-6532 4.0 \(\begin{array}{ll}83-9260-6579 & 2.0\end{array}\) 83-9261-4020 8.0 83-9261-4041 23.0 83-9261-4042 8.0 83-9261-4305 4.0 83-4570-0387 1.0 83-9262-0555 3.0 83-9262-0559 10.0 83-9261-4006 10.0

TITLE HARNESS ASSY-METER, REMOTE
CATALOG NO. 83-4570-0387
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline REF. DES. OR FIND NO. & \begin{tabular}{l}
DRAWING NUMBER \\
- MFGR PART NO.
\end{tabular} & MFGR NAME & D E S C R & I P T I O N & PH & CATALOG NO. & OTY. \\
\hline P1, P2, P3, P4 & 1-480276-0 & AMP INC & SHELL-CONN & N,RECT, . 665 WD X. 850 & & 83-1610-0929 & 4.0 \\
\hline 1 & 60511-4-LP & AMP INC & CONTACT-EL & LEC,PIN, . 084 DIA & & 83-1610-0925 & 16.0 \\
\hline 2 & RA863 & THOM \& BETTS & LUG-TERMIN & NAL SOLDERLS,RING,\#8 & & \[
83-9630-0204
\] & 8.0 \\
\hline 3 & & NATL WIRE & WIRE-PVC, & TYPE B, 22GA YELLOW & & \[
83-7910-0040
\] & \(A R\) \\
\hline 4 & & NATL WIRE & WIRE-TYPE & B,22GA VIO NYLON JKT & & 83-7910-0041 & AR \\
\hline 5 & & NATL WIRE & WIRE-PVC, & TYPE R, 22GA GRAY & & 83-7910-0042 & AR \\
\hline 6 & & NATL WIRE & WIRE-TYPE & B, 22GA BLU NYLON JKT & & 83-7910-0044 & \(A R\) \\
\hline 7 & & & WIRE-TYPE & B, 22 GA, VIOLET-WHITE & & 83-7910-0068 & \(A R\) \\
\hline 8 & & AUTOLITE & WIRE-TYPE & B,22GA GR/WT NYL JKT & & 83-7910-0170 & AR \\
\hline 10 & & NATL WIRE & WIRE-TYPE & B, 22GA,GRN NYLN JKT & & 83-7910-0248 & \(A R\) \\
\hline 11 & & NATL WIRE & WIRE-TYPE & B, 22GA RED NYLON JKT & & 83-7910-0249 & \(A R\) \\
\hline 12 & & NATL WIRE & WIRE-TYPE & B,22 GA ORNG NYL JKT & & 83-7910-0250 & AR \\
\hline 13 & & NATL WIRE & WIRE-TYPE & B,22GA,BRN NYLN JKT & & \[
83-7910-0251
\] & AR \\
\hline 14 & & & WIRE-TYPE & B, 22 GA YELLOW NYLN & & 83-7910-0259 & AR \\
\hline 15 & & & WIRE TYPE & B, 22 GA GRAY NYLN & & 83-7910-0261 & \(A R\) \\
\hline 16 & & & WIRE-TYPE & B, 22 GA RED NYLN JKT & & 83-7910-0264 & \(A R\) \\
\hline 17
18 & & & WIRE-TYPE & B, 22 GA BLU NYLN JKT & & 83-7910-0288 & \(A R\) \\
\hline 19 & & & WIRE-TYPE & B,22GA RRN NYLN JKT & & \(83-7910-0301\)
\(83-7910-0303\) & \(A R\) \\
\hline
\end{tabular}

TITLE HOUSING ASSY-SIGNAL ELEC 4 TRK
CATALUG NO. 83-4310-1000
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline REF. DFS. OR FIND NO. & \multicolumn{2}{|l|}{DRAWING NUMBER} & MFGR NAME & DESCRIPTION & PH & CATALOG NO. & OTY. \\
\hline 1 & 23028A036-1 & A & M INCOM & FILLER-ANGULAR, REAR, LH, CAB & & 83-3290-0160 & 1.0 \\
\hline 2 & 23028A036-2 & A & MINCOM & FILLER-ANGULAR , REAR , RH, CAB & & 83-3290-0161 & 1.0 \\
\hline 3 & 23028A025-1 & A & MINCOM & HOUSING-UPPER, ELEC 4-BAY & & 83-3310-0991 & 1.0 \\
\hline 4 & 230284041 & 8 & MINCOM & HOUSING-LOWER, ELECTRONICS & & 83-3310-0994 & 1.0 \\
\hline 5 & 23028A024-1 & B & MINCOM & BRKT-MTG, HOUSING, LH, ELEC & & 83-3320-1416 & 1.0 \\
\hline 6 & 23028A024-2 & B & MINCOM & BRKT-MTG, HOUSING, RH, ELEC & & 83-3320-1417 & 1.0 \\
\hline 7 & 23028A021-1 & A & MINCOM & SUPPORT-ANGULAR, CAB, CONSOLE LH & & 83-3340-0504 & 1.0 \\
\hline 8 & 23028A021-2 & A & MINCOM & SUPPORT-ANGULAR, CAB, CONSOLE, RH & & 83-3340-0505 & 1.0 \\
\hline 9 & 23028A038 & A & M INCOM & PANEL-FILLER, SUPPORT, HOUSING & & 83-3360-0933 & 1.0 \\
\hline 10 & MS 35649-62 & & MIL STD & NUT-HEX,PLAIN, \(2-32 \times .313\) WD & & 83-9260-2005 & 14.0 \\
\hline 11 & MS35649-82 & & MIL STO & NUT-HEX,PLAIN,8-32 X . 344 WD & & 83-9260-2006 & 8.0 \\
\hline 12 & MS 35206-229 & & MIL STD & SCREW-MACH, PAN HD,6-32 X 7/16 & & 83-9260-4532 & 2.0 \\
\hline 13 & & & & SCR-MACH,F HD, 8-32 X 1/2 & & 83-9260-6532 & 4.0 \\
\hline 14 & MS \(24693-\mathrm{S} 28\) & & MIL STD & SCREW-MACH,FH,6-32 X . 500 & & 83-9260-6579 & 12.0 \\
\hline 15 & MS35338-42 & & MIL STD & WASHER-LOCK, SPLIT, HELICAL, \#8 & & 83-9261-4020 & 8.0 \\
\hline 16 & AN960-6L & & \(\triangle\) \& \(N\) STO & WASHER-FLAT, LIGHT SERIES,\#6 & & 83-9261-4041 & 14.0 \\
\hline 17 & AN960-8L & & \(A E N S T D\) & WASHER-FLAT, LIGHT SERIES,\#8 & & 83-9261-4042 & 8.0 \\
\hline 18 & MS 35338-41 & & MIL STD & WASHER-LOCK, SPLIT, \#6 & & 83-9261-4305 & 14.0 \\
\hline 19 & A6732-5-02 & & ESNA & NUT-NON LKG, PL, 10-32 & & 83-9260-0059 & 16.0 \\
\hline 20 & & & & SCREW-WOOD, RD HO,\#10 X 1.00LG & & 83-9262-0559 & 10.0 \\
\hline 21 & & & & SCREW-WOOD, RD HD, \#6 \(\times 7 / 8\) & & 83-9262-0555 & 3.0 \\
\hline 22 & AN505-8R9 & & \(A \& N S T D\) & SCREW-MACH,FH,8-32 X 9/16 & & 83-9260-6533 & 4.0 \\
\hline
\end{tabular}

REF. DES. OR FIND NO.

1
2
3
4
5

DRAWING NUMBER MFGR NAME - MFGR PART NO.
\begin{tabular}{lll}
230284045 & MINCOM & PLATE-COVER,DISPLAY PANEL \\
\(04032.002-1\) & E MINCOM & HANDLE-PULL, 1.517 LONG \\
MS35206-213 & MIL STD & \\
& & SCREW-MACH,PAN HD,4-40 \(\times 1 / 4\) \\
MS35338-40 & WIL STD & WASHER-FLAT,GENFRAL PURPOSE \(\# 4\)
\end{tabular}

DESCRIP TI O N
Ph CATALOG NO. OTY. PLATE COVER, DISPLAY PANEL WASHER-FLAT, GENFRAL PURPOSE \(\# 4\) WASHER-LOCK, SPLIT,HELICAL, \#4
\begin{tabular}{ll}
\(83-3320-1444\) & 1.0 \\
\(83-3270-0144\) & 1.0 \\
\(83-9260-4513\) & 2.0 \\
\(83-9261-4002\) & 2.0 \\
\(83-9261-4303\) & 2.0
\end{tabular}

TITLE HOUSING ASSY-SIGNAL ELEC, 2TRK
CATALOG NO. 83-4310-0999

REF. DES. OR FIND NO.


DRAWING NUMBER - MFGR PART NO.
\begin{tabular}{|c|c|c|c|}
\hline 23028A036-3 & A & MINCOM & FILLER-ANGULAR, REAR, LH CAB \\
\hline 23028A036-4 & A & MINCOM & FILLER-ANGULAR, REAR, RH, CAB \\
\hline 23028A025-2 & A & MINCOM & HOUSING-UPPER, FLECTRONICS \\
\hline 23028 A041 & \(B\) & MINCOM & HOUSING-LOWER, ELECTRONICS \\
\hline 23028A024-3 & \(B\) & M INCOM & BRKT-MTG, HOUSING, LH FLEC \\
\hline 23028A024-4 & 8 & MINCOM & BRKT-MTG, HOUSING, RH ELEC \\
\hline 23028A021-1 & A & MINCOM & SUPPORT-ANGULAR, CAB, CONSOLE LH \\
\hline 23028A021-2 & A & MINCOM & SUPPORT-ANGULAR, CAB, CONSOLF,RH \\
\hline 230284038 & A & MINCOM & PANEL-FILLER, SUPPORT, HOUSING \\
\hline MS 35649-62 & & MIL STD & NUT-HEX, PLAIN,6-32 X . 313 WD \\
\hline MS35649-82 & & MIL STD & NUT-HEX,PLAIN,8-32 X . 344 WD \\
\hline MS 35206-229 & & MIL STD & SCREW-MACH,PAN HD,6-32 \(\times 7 / 16\) SCR-MACH,F HD,8-32 X 1/2 \\
\hline MS 24693-S28 & & MIL STD & SCREW-MACH,FH,6-32 X . 500 \\
\hline MS35338-42 & & MIL STD & WASHER-LOCK, SPLIT,HELICAL, \#8 \\
\hline AN960-6L & & \(\Delta\) \& \(N\) STD & WASHER-FLAT, LIGHT SERIES,\#6 \\
\hline AN960-8L & & AEN STD & WASHER-FLAT, LIGHT SERIES,\#8 \\
\hline MS 35338-41 & & MIL STI & WASHER-LOCK, SPLIT, \#6 \\
\hline A6732-5-02 & & ESNA & NUT-NON LKG,PL, 10-32 \\
\hline & & & SCREW-WOOD, RD HD, \#6 x \(7 / 8\) \\
\hline -8 & & A \& N STO & \\
\hline
\end{tabular}

PH CATALOG NO. OTY.

83-3290-0163 83-3310-0992 \(\begin{array}{ll}83-3310-0994 & 1.0\end{array}\) 83-3320-1418 1.0 83-3320-1419 1.0 83-3340-0504 1.0 83-3340-0505 1.0 83-3360-0933 1.0 83-9260-2005 14.0 83-9260-2006 8.0 83-9260-4532 2.0 83-9260-6532 4.0 83-9260-6579 12.0 83-9261-4020 8.0 83-9261-4041 14.0 83-9261-4042. 8.0 83-9261-4305 14.0 83-9260-0059 8.0 83-9262-0559 10.0 83-9262-0555 3.0 83-9260-6533 4.0

TITLE CABLE ASSY-POHER,REPRODUCER
CATALOG NO. 83-4570-0420

REF DFS, OR FIND NO.
- MFGR PART NO.

1-480273-0 AMP
78 S 8
1-480278-0
60510-4 AMP INC
60511-4-LP AMP INC
3-24
3025-070-5/16 ID
AMPHENOL

NATL WIREECABLE
NATL WIRE CO
SURPRENANT
NATL WIRE
NATL WIRE

DESCRIP TIO N

SHELL-CONN, RFCT, . 565 WDX. 65
SOCKET-TURE, 8 CONTACT SHELL-CONN, RECT, 12 POSITIONS

CONTACT-ELFC,SOC, 18-22GA SIZE
CONTACT-ELEC,PIN, . 084 DIA CLAMP-CABLE,SOCKET MTG,. 375 MCE TURING-SCOTCHTITE, CLEAR VINYL WIRE-TYPE B IGGA RFD NYLON JAC WIRE-PVC, TYPE R, 16 GA,GRAY/RLK WIRE-PVC TYPE R NYLON 20GA RRN WIRE-TYPE B, 20 GA RED-WHITE WIRE-TYPE R, 22GA RLU NYLON JKT WIRE-TYPE R, 22GA VIO NYLON JKT

PH CATALOG NOI. OTY. 83-1610-0923 1.0

83-1620-0188 1.0 83-1610-0931

83-1610-0927 83-1610-0925 83-1650-0483 1.0 83-7910-0279 AR R3-7910-0050 AR 83-7910-0047 AR 83-7910-0037 AR 83-7910-0053 AR 83-7910-0044 AR 83-7910-0041 \(\quad A R\)

P \(\Delta\) RTSLIST
C.ATALOR MO. K3-4570-0466
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline RFF. OFS OR FINO NO. & \begin{tabular}{l}
DRAWING MUMFER \\
- MFGR PART NII.
\end{tabular} & IUFGR MAIAF & 1) E S C. K I P T I O M & PH & C.ATALOG NO. & OTY. \\
\hline \(p 4\) & 1-480278-0 & AMP INC & SHELL-CIINN, RFCT, 12 PIISITIUNS & & 83-1610-0931 & 1.0 \\
\hline P110 & 1-480324-0 & AMP INC & SHELL-CINN, RECT, 15POSITICIN & & 83-1610-0933 & 1.0 \\
\hline 1 & 60511-4-1.P & AIMP INC, & CONTACT-FLEC,PIN, .084 DIA & & 83-1610-0925 & 20.0 \\
\hline 2 & (iSR134C & THIJM \& RETTS & FFPRULF-RF CABLF GN: 13311 & & 83-9690-0020 & 7.0 \\
\hline 3 & GSC.194C & THINASEMETTS & FERKULE-RF CABLF SRGIADİING & & 83-9690-0118 & 2.0 \\
\hline 4 & & NATL WIRE & WIRE-PVC, TYPF R, 22GA YELLIW & & 83-7910-0040 & AR \\
\hline 5 & & IATL HIRE & WIRE-TYPE R, 22G^ VIO NYLON JKT & & 83-7910-0041 & \(\Delta \mathrm{R}\) \\
\hline 6 & & MATL WIRE & WIRE-PVC, TYPF R, 22GA GRAY & & 83-7910-0042 & \(A R\) \\
\hline 7 & & NATL WIRF & :HIRF-TYPF R, 2.2GA RLU AYLIN JKT & & 83-7910-0044 & \(A R\) \\
\hline 8 & & MATL HIRE & WIRE-TYPE K, 22 GA RLK MYLON JKT & & 83-7910-0045 & AR \\
\hline \(\bigcirc\) & & NATL HIRE & WIRE-TYPF R, 2 ORA,GRL NYIM JKT & & 83-7910-0248 & \(A R\) \\
\hline 10 & & NATL WIRE & WIRE-TYPE B, 32 GA REO NYLON JKT & & 83-7910-0249 & AR \\
\hline 11 & & NATL NIRF & WIRE-TYPE B, 22GA,RRN NYLN JKT & & 83-7910-0251 & \(A R\) \\
\hline 12 & 3025-070-5/1610 & \(3 i \cdot\) & TURING-SCOTCHTITF,CLFAR VINYL & & 83-7910-0279 & AR \\
\hline 13 & NH1034N?SJ & NATL WIRF & WIRE-TYPF R, 22GA RED/RLU 2 CON & & 83-7910-0367 & \(A R\) \\
\hline
\end{tabular}

REF. DFS. OR FIND NO.

C101
CR101, CR102, CR 104
DS 103
J101
J102
J103
J104, J105, J106, J107, J108
J109, J111
J110
\(K 101, K 102\)
0101
R100
R101
R102,R118
R104, R105
R106
R108
R110
R114
R115,R117
R116
R119
R120
S101
Sl02
S103,S 104
S105
S106
T101
Tl02
TB1,TB?
1
2
3

DRAWING NUMBER MFGR NAME D E S C R I P T I 0 N PH CATALOG NO. OTY. - MFGR PART NO.

MIL CS13AC221 1 N4002

RDL-A1F1-0000

\section*{D3F}

D3M
\(\mathrm{N}-111\)
MS 3102 E10SL-3P
1-480273-0
1-480323-0
KHP17D11
2N3391A
302163
0A781-7356
04781-7202
0A781-7365
301073
0A781-7350
LITTLE DEVIL
LITTLE DEVIL
LITTLE DEVIL
0A781-7360
04781-7359
0А781-7367
SEE DESC
SEE DESC
PA-0 22-1449
SS43
SS50

23059 A025
230594029
4-01769
23059A001-1
23059A001-2
23059A006-1

MIL STD
MOTOROLA
TSTR ELECT
SWITCHCRAFT SWITCHCRAFT SWITCHCRAFT MIL STD AMP INC AMP INC DHMITE OHMITE MINCOM SPEC MINCOM SPEC MINCOM SPEC

D IALCO DIALCO CENTRALAB STACKPOLE STACKPOLE

B MINCOM
A MINCOM ALCON

B MINCOM
B MINCOM
D MINCOM
(1TTR \& BRUM RELAY-4PDT,650 OHM 24 VDC 3 AMP GENERAL ELEC TSTR-SI,NPN, PWR, 25 VCB

CTS OF BERNE RES-VAR, WW, \(2 K\) OHM \(5 W 5 \%\) MINCOM SPEC RES-FXD,FILM, 620 OHIA, \(1 / 2 \mathrm{~W}, 2 \%\) S MINCOM SPEC RES-FXD,FILM, 150 OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) MINCOM SPEC RFS-FXD,FILM,5.6K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) CTS OF BERNE RES-VAR, WW, 10 K OHM 5W 5\% MINCOM SPEC RES-FXD,FILM, 330 OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) OHMITE RES-FXD, COMP, \(330 H M, 1 \mathrm{~W}, 5 \%\)

CAP-FXD,TA, \(47 \mathrm{UF} 35 \mathrm{~V} 20 \%\) RECT-SI, SEMICOND, 100 PIV , 1 A

LIGHT-INDICATOR,P 2STC,RED
CONN-RECP, ELFC, PNL MTG, 3 SOC CONN-RECP, ELEC,PNL MTG, 3 PIN JACK-TEL, 2 CONDIICTOR, INSULATED CONN-RECPT, BOX MTG, 3 PIN CONT SHELL-CONN, RFCT, . 565 WDX. 65 SHELL-CONN, RFCT, .650WDX1. 280 RES-FXD, COMP, 270 OHM \(1 \mathrm{~W} 5 \%\) RES-FXD,COMP, 390 OHM \(1 \mathrm{~W} 5 \%\) RES-FXD,FILM, 2. \(2 \mathrm{~K} O H M, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES \(-F X D, F I L M, 1.2 \mathrm{~K} O H M, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM,6.8K OHM, \(1 / 2 W, 2 \% S\)

SWITCH-PB, \(\quad 927-1141-1572-523\) SWITCH-PB, 922-1141-1573-523 SWITCH-ROT, PHEN, 115 VAC 230 MA SWITCH-SLIDE, SP 3 POSITION SWITCH-SLIDE, DPDT

XMFR-AUDID INPUT,SIGNAL ELECT
XMFR-AUDIO OUTPUT, SIGNAL ELECT TERM BD-5 POS,. 325 WD X1.312LG

PLATE-HSG MTG,RH,SIG ELECT PLATE-MTG,HSNG,RH,SIGNAL ELECT PLATE-PANEL MTG,LH,SIG ELECT

83-1510-6085 1.0
\(83-1530-0122 \quad 3.0\)
\(83-1550-25821.0\)
83-1610-1105 1.0
\(\begin{array}{ll}83-1610-1106 & 1.0 \\ 83-1610-0885 & 1.0\end{array}\)
\(83-1610-0885 \quad 1.0\)
83-1610-1510 5.0
83-1610-0923 2.0
83-1610-0934 1.0
83-1550-3550 2.0
83-1530-2230 1.0
\(\begin{array}{ll}83-1520-1299 & 1.0 \\ 83-1520-7356 & 1.0\end{array}\)
\(\begin{array}{ll}83-1520-7356 & 1.0\end{array}\)
83-1520-7202 2.0
83-1520-7365 2.0
83-1520-1336 \(\quad 1.0\) 83-1520-7350 1.0 \(83-9520-4120 \quad 1.0\) 83-9520-4091 1.0 83-9520-4142 2.0 83-1520-7360 \(\quad 1.0\) 83-1520-7359 1.0 83-1520-7367

83-1550-5227 1.0
83-1550-5226 1.0
83-1550-5225 2.0
83-1550-5228 1.0
83-1550-5229 1.0
83-3540-1122 1.0
83-3540-1109 1.0
83-1640-0625 2.0
\(\begin{array}{ll}83-3320-1128 & 1.0 \\ 83-3320-1129 & 1.0\end{array}\)
83-3320-1130 \(\quad 2.0\)
title housing assy-audio,sig elect
CATALOG NO. 83-5920-0842
- - - - - - - - - - - - - M M T ERIIAL

REO
REF. DES. OR FIND NO.
DRAWING NUMBER MFGR NAME DESCRIPTIDN
PH CATALOG NO.
OTY. - MFGR PART NO.
\(23059 A 004\)
\(23059 A 024\)
\(23059 A 026\)
\(23059 A 003\)
\(23059 A 014-3\)
\(23059 A 027\)
\(23059 A 013-1\)
\(23059 A 013-2\)
\(R 102-125\)
\(00000 A 614-7\)
\(00000 A 614-9\)
\(00000 A 614-21\)
\(00000 A 614-2.2\)
\(23059 A 002\)
\(23059 A 007\)
\(091-0024-000\)
\(23059 A 028\)
KL701
DS70-1-2
DS70-3-2
327
\(R-301-51 A\)
\(9 K H 1\)
\(2 V K 22 S / 1-2\)
\(60510-4\)
\(M S 35206-215\)
\(M S 35206-227\)
\(M S 35206-228\)
\(M S 35190-223\)

E MINCOM B MINCOM D MINCOM B MINCOM B MINCOM B MINCOM B MINCOM MINCOM
SCANBE
G MINCOM
G MINCOM G MINCOM G MINCOM D MINCOM B MINCOM VIKING
B MINCOM RAYTHEON RAYTHEON RAYTHEON GENERAL ELEC SCANBE POT.BRUM VIKING AMP INC MIL STD MIL STD MIL STD MIL STD

SUPPORT-ROD,GUIDE,P.C. BOARD BRACKET-XMFR MTG,SIGNAL ELECT BRACKET-SLOTTED,DOOR STOP PANEL-FRONT, SIGNAL ELECTRONICS HINGE-BUTT, CHASSIS HALF
ROD-DOOR STOP,SIGNAL ELECT HINGE-BUTT, DOOR LEAF, LH
HINGE-BUTT, DOOR LEAF,RH
SPACER-GUIDE,P.C. BD,. 125 THK
SPACER-P.C. BD,CHAN, . 500 LG
SPACER-P.C. BD, CHAN,. 625 LG
SPACER-P.C. BD,CHAN, 2.941 LG SPACER-P.C. RD, CHAN, 3.190 LG PANEL-CONNECTOR MTG,SIG ELECT PANEL-FRONT, COMPONENT MTG INSERT-POLARIZING,CONN, . 300 LG SPRING-DOOR CATCH,SIG ELECT LOCK-DIAL, KNOB,RD, 1.00 DIA KNOB-CONTROL, RD, UNSKIRTED KNOB-CONTROL,RD, SKIRTED
LAMP-INCANDESCENT, . 04 AMP GUIDE-P.C. BD, 5. 287 LG
SOCKET-RELAY, 14 CONT
CONN-P.C., ELEC,PIERCD, 22 CON CONTACT-ELEC, SOC, 18-22GA SIZE SCREW-MACH,PAN \(\mathrm{HD}, 4-40 \times 3 / 8\) SCREW-MACH,P.AN HD,6-32 \(\times 5 / 16\) SCREW-MACH,PAN HD,6-32 \(\times 3 / 8\) SCREW-MACH,FH,4-40 \(\times 3 / 8\) SCR-MACH,F HD, 8-32 X . 500 LG NUT-HEX,SM PATT,4-40 X . 188 WD NUT-HEX,SM PATT,6-32 X . 250 WD WASHER-FLAT,. 219 OD X. 125 ID WASHER-FLAT, SM PATT,\#6 WA SHER-LOCK, SPLIT,HELICAL,\#4 WASHER-LOCK, SPLIT, \#6
EYELET-MET, . 121 OD X. 169 LG LENS-MOLDED, PWR SUP, WITH METER LABEL-I.D,NAB \& DYNATRACK, LH LABEL-I.D,NAB \& DYNATRACK, RH LABEL-IDENTIFICATION, MODULE FERRULE-RF CABLE GND,. 30000
\begin{tabular}{rr}
\(83-3340-0389\) & 4.0 \\
\(83-3320-1133\) & 2.0 \\
\(83-3320-1127\) & 1.0 \\
\(83-3360-0731\) & 1.0 \\
\(83-3270-0479\) & 1.0 \\
\(83-3280-0418\) & 1.0 \\
\(83-3270-0475\) & 1.0 \\
\(83-3270-0476\) & 1.0 \\
\(83-1350-0385\) & 8.0 \\
\(83-3350-0236\) & 16.0 \\
\(83-3350-0238\) & 16.0 \\
\(83-3350-0386\) & 4.0 \\
\(83-3350-0387\) & 8.0 \\
\(83-3360-0730\) & 1.0 \\
\(83-3360-0729\) & 1.0 \\
\(83-1610-0760\) & 8.0 \\
\(83-3280-0447\) & 1.0 \\
\(83-1270-0388\) & 2.0 \\
\(83-1270-0486\) & 2.0 \\
\(83-1270-0487\) & 2.0 \\
\(83-1550-2506\) & 3.0 \\
\(83-1340-0393\) & 20.0 \\
\(83-1620-0108\) & 2.0 \\
\(83-1610-0845\) & 8.0 \\
\(83-1610-0927\) & 27.0 \\
\(83-9260-4515\) & 38.0 \\
\(83-9260-4530\) & 2.0 \\
\(83-9260-4531\) & 14.0 \\
\(83-9260-6504\) & 4.0 \\
\(83-9260-6610\) & 8.0 \\
\(83-9260-2201\) & 24.0 \\
\(83-9260-2202\) & 20.0 \\
\(83-9261-4012\) & 42.0 \\
\(83-9261-4013\) & 30.0 \\
\(83-9261-4303\) & 42.0 \\
\(83-9261-4305\) & 30.0 \\
\(83-7290-0097\) & 4.0 \\
\(83-3550-1419\) & 1.0 \\
\(83-3550-1573\) & 1.0 \\
\(83-3550-1574\) & 1.0 \\
\(83-3550-1621\) & 1.0 \\
\(83-9690-0240\) & 18.0 \\
83
\end{tabular}


Figure 49. Audio Signal Electronics Housing Assembly

P A R T S L I S
PL 23059 AO 0
RFV H
TITLE HOUSING ASSY-AUDIO,SIG ELECT
CATALOG NO. 83-5920-0842

REF. DFS. OR FIND NO.
DRAWING NUMRER
MFGR NAME D E S C R I P T I O N
PH CATALOG MO. OTY.
\begin{tabular}{cc} 
& 66 \\
& 67 \\
& 68 \\
& 69 \\
& 70 \\
& 71 \\
& 72 \\
& 73 \\
& 74 \\
& 75 \\
& 76 \\
& 77 \\
& 78 \\
& 79 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline YEC-100 & RRUNDY & FERRULE-RF CARLE YEL, 270 OD & 83-9690-0212 & 32.0 \\
\hline & NATIONAL & WIRE, PVC, SHIELDED 24GA 2COND & 83-7910-0511 & AR \\
\hline & NATL WIRE & WIRE-TYPE B, 22GA WHT NYLON JKT & 83-7910-0052 & AR \\
\hline 1561-2 & & WIRE-TYPE HiW, 22GA RLK NYLN JKT & 83-7910-0460 & \(A R\) \\
\hline 1561-3 & & WIRE-TYPF MW, 22GA RED NYLN JKT & 83-7910-0461 & \(A R\) \\
\hline 1561-8 & ALPHA WIRE & WIRE-TYPE PIW,22GA ORNG NYL JKT & 83-7910-0462 & \(A R\) \\
\hline 1561-5 & & WIRE-TYPE MW,22GA YEL NYLN JKT & 83-7910-0463 & \(A R\) \\
\hline 1561-6 & ALPHA WIRE & WIRE-TYPE MW, 22GA BLU NYLN JKT & 83-7910-0464 & \(\Delta \mathrm{R}\) \\
\hline 1561-1 & ALPHA WIRE & WIRE-TYPE MW, 22GA WHT NYLN JKT & 83-7910-0467 & AR \\
\hline & NATL WIRE & WIRE-PVC, TYPE R, 22GA YELLOW & 83-7910-0040 & AR \\
\hline & NATL WIRE & WIRE-TYPE R, 22GA VIO NYLON JKT & 83-7910-0041 & AR \\
\hline & NATL WIRE & WIRE-PVC, TYPE R, 22GA GRAY & 83-7910-0042 & \(\Delta \mathrm{R}\) \\
\hline & NATL WIRE & WIRE-TYPE B, 22GA WHT MYYLON JKT & 83-7910-0043 & AR \\
\hline & NATL WIRE & WIRE-TYPE 6,22GA BLU NYLJN JKT & 83-7910-0044 & AR \\
\hline & NATL WIRE & WIRE-TYPE B, 22GA RLK NYLON JKT & 83-7910-0045 & \(A R\) \\
\hline & NATL WIRE & WIRE-TYPE R, 22GA,GRN NYLN JKT & 83-7910-0248 & \(A R\) \\
\hline & NATL WIRE & WIRE-TYPE \(\mathrm{B}, 22 \mathrm{GA}\) RED NYLON JKT & 83-7910-02.49 & \(A R\) \\
\hline & NATL WIRE & WIRE-TYPE B, 22 GA JRNG MYL JKT & 83-7910-0250 & AR \\
\hline & SURPRENANT & WIRE-PVC TYPE R, 22 GA,RED-BLK & 83-7910-0066 & AR \\
\hline & SURPRENANT & WIRE-PVC, \({ }^{\text {W }}\) NYLON, \(22 \mathrm{GA}, \mathrm{YEL-RLK}\) & 83-7910-0067 & AR \\
\hline & SURPRENANT & WIRE-PVC, B NYLON, 22 GA , GRN-RLK & 83-7910-0069 & AR \\
\hline & SURPRENANT & WIRE-PVC,B NYLON, 22GA,BLU-RLK & 83-7910-0070 & AR \\
\hline & NATL WIRE & WIRE-TYPE R, 22GA WHT/RLK NYLN & 83-7910-0262 & AR \\
\hline & NATL HIRE & WIRE-TYPE B, 22 GA ORN/BLK NYLN & 83-7910-0297 & AR \\
\hline & NATL WIRE & WIRE-TYPE B, 22GA GRY/BLK NYLN & 83-7910-0298 & AR \\
\hline & NATL HIRE & WIRE-TYPE R,2.2GA PR/RLK NYLN & 83-7910-0299 & AR \\
\hline & NATL WIRE & WIRE-PVC, B NYLON, 22GA, BRN-RLK & 83-7910-0300 & AR \\
\hline & & WIRE-TYPE \(\mathrm{H}, 22 \mathrm{GA}, \mathrm{VIILET}\) WHITE & 83-7910-0068 & \(A R\) \\
\hline & SURPRENANT & WIRE-PVC, B NYLON, 22 GA , BLK-INHT & 83-7910-0071 & \(A R\) \\
\hline & & WIRE-TYPE B, 22 GA YELLCW NYLN & 83-7910-0259 & \(\Delta \mathrm{R}\) \\
\hline & NATL WIRE & WIRE-PVC TYPE R, 22 GA,GRN-WHT & 83-7910-0260 & AR \\
\hline & & WIRE TYPE B, 22 GA GRAY NYLN & 83-7910-0261 & \(A R\) \\
\hline & & WIRE-TYPE B, 22 GA RED NYLN JKT & 83-7910-0264 & AR \\
\hline & & WIRE-TYPE B, 22 GA BLII NYLN JKT & 83-7910-0288 & AR \\
\hline & & WIRE-TYPF B, 22GA BRN IYYLN JKT & 83-7910-0301 & AR \\
\hline & & WIRE-TYPE R, 22 GA ORN MYLM JKT & 83-7910-0303 & AR \\
\hline MS 35206-205 & MIL STD & SCREW-MACH, PAN HD, 2-56 X \(3 / 8\) WASHER-FLAT,SM PATT, \#? & \[
\begin{aligned}
& 83-9260-4504 \\
& 83-9261-4011
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] \\
\hline MS 35338-39 & MIL STD & WASHER-LOCK, SPLIT,HELICAL,\#2 & 83-9261-4301 & 2.0 \\
\hline & & NUT-HEX, SPi PATT, 2-56 X . 156 WD & 83-9260-2206 & 2.0 \\
\hline RA853 & THUMS \& BETS & TERN-LUG, INSIL, R TG, 26WI) & 83-9630-0203 & 2.0 \\
\hline MS35333-42 & MIL STI) & WASHER-LDCK,FLAT, INT T,\#3/8 & 83-9261-4211 & 2.0 \\
\hline
\end{tabular}

TITLE HOUSING ASSY-AUDIU,SIG ELECT CATALOG NO. 83-5920-0842

REF. DES. OR FIND NO.

108
DRAWING NUMRFR
MFGR NAME
D ESCRIPTIDN
- MFGR PART NN.
\(M-2786\)
ALLEN BRADLY NUT-HEX,PLAIN,3/8-32 X . 500 OD
83-9260-2112 4.0

TITLE P.C. BD ASSY-BIAS,ERASE
CATALOG NO. 83-4930-1121

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & REF. DES. OR FIND NO. & \begin{tabular}{l}
DRAWING NUMBER \\
- MFGR PART NO.
\end{tabular} & MFGR NAME & DESCRIPTISN & PH CATALOG NO. & QTY. \\
\hline & R23,R24 & 3067P-1-502 & BOURNS & RES-VAR, WW, 5 K OHM 1/2W 10\% & 83-1520-1319 & 2.0 \\
\hline & R25 & 77 PR1K & BECKMAN & RES-VAR, COMP, 1 K OHM, \(3 / 4 \mathrm{~W}\), \(10 \%\) & 83-1520-1211 & 1.0 \\
\hline & R26 & 0A781-7379 & MINCOM SPEC & RES-FXD,FILM, 47 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7379 & 1.0 \\
\hline & R29 & 0A781-7325 & MINCOM SPEC & RES-FXD,FILM, 10 OHM, 1/2W, 2\% S & 83-1520-7325 & 1.0 \\
\hline & T1 & 00000A718 A & MINCOM & XMFR-TORROIDAL, ARNOLD CORE & 83-3540-1150 & 1.0 \\
\hline & T2,T4,T5 & 00000A719 A & MINCOM & XMFR-TORROIDAL, ARNOLD CORE & 83-3540-1151 & 3.0 \\
\hline & T3 & 00000A720 A & MINCOM & XMFR-TORR / IDAL, ARNOLD CORE & 83-3540-1152 & 1.0 \\
\hline 3 & TP1 & 3-582118-9 & AMP INC & JACK-TIP, 156 WD X . 460 DP & 83-1610-0752 & 1.0 \\
\hline 泉 & 1 & 23059 A021 E & M INCOM & P.C. BD-BIAS,ERASE & 83-3640-0666 & 1.0 \\
\hline N
1
0 & 2 & 00000A667 B & M INCOM & HANDLE-EJECTOR,P.C. BD, 1.50 LG & 83-3270-0371 & 1.0 \\
\hline & 3 & 79-022-094-0250 & ESNA & PIN-SPRING, . 094 DIA X . 250 LG & 83-7280-0270 & 1.0 \\
\hline & 4 & 00000A734-1 B & MINCOM & LAREL-IDENT,P.C. BD,MARKED \(\ddagger 1 *\) & 83-3550-1446 & 1.0 \\
\hline & 5 & 23059 A016 A & MINCOM & BRACKET-COMPONENT MTG,SIG ELEC & 83-3320-1132 & 1.0 \\
\hline & 7 & TXBF-032-025B & IERC & HEAT SINK-ELEC COMP, TO-5 CASE & 83-9690-0108 & 2.0 \\
\hline & 8 & MS35206-215 & MIL STD & SCREW-MACH,PAN HD, 4-40 \(\times 3 / 8\) & 83-9260-4515 & 4.0 \\
\hline & 9 & & & NUT-HEX,SM PATT,4-40 X . 188 WD & 83-9260-2201 & 4.0 \\
\hline & 10 & & & WASHER-FLAT, . 219 OD X . 125 ID & 83-9261-4012 & 4.0 \\
\hline & 11 & MS 35338-40 & MIL STD & WASHER-LOCK, SPLIT,HELICAL,\#4 & 83-9261-4303 & 4.0 \\
\hline & 12 & \#EXE-22-122 & THERMAX & WIRE-TYPE C,22GA WHT TEFLN JKT & 83-7910-0476 & AR \\
\hline & 13 & & & WASHER-FLAT, SM PATT,\#10 & 83-9261-4046 & 1.0 \\
\hline
\end{tabular}

\section*{TITLE P.C.BD ASSY-NAB ERASE COUPLER \\ CATALOG NO. 83-4930-1117}

REF. DES. OR FIND NO.

Cl
R3

TPI
\begin{tabular}{|c|c|c|}
\hline DRAWING NUMBER & \multirow[t]{2}{*}{MFGR NAME} & \multirow[t]{2}{*}{DESCRIPTION} \\
\hline - MFGR PART NO. & & \\
\hline TYPE 311 & ARCO & CAP-VAR,MICA, 780-2110PF 250 V \\
\hline 3067P-1-502 & BOURNS & RES-VAR, WW, 5 K OHM 1/2W 10\% \\
\hline 3-582118-9 & AMP INC & JACK-TIP. 156 WD X . 460 DP \\
\hline 23059A031 E & M INCOM & P.C.BD-NAB ERASE COUPLER \\
\hline 30113A018-2 A & MINCOM & SHIELD-CIRCUIT BD \\
\hline 000004667 B & MINCOM & HANDLE-EJECTOR, P.C. BD, 1.50 LG \\
\hline 79-022-094-0250 & ESNA & PIN-SPRING, . 094 DIA X . 250 LG \\
\hline 1434 & B IRNBACH & WIRE-BUS, 22GA ROUND \\
\hline MS 35206-202 & MIL STD & SCREW-MACH,PAN HD,2-56 X 3/16 WASHER-FLAT,GENERAL PURPOSE,\#2 \\
\hline MS 35338-39 & MIL STD & WASHER-LOCK, SPLIT,HELICAL,\#2 \\
\hline \[
\begin{aligned}
& 00000 A 734-2 \\
& \text { NAS620-416 }
\end{aligned}
\] & MINCOM NAS STD & LABEL-IDENT,P.C. BD, \(\because 3 N *\) WASHER-FLAT,SM PATT,\#1/4 \\
\hline
\end{tabular}

PH CATALOG NO. OTY.

83-1510-6274 1.0
83-1520-1319 1.0

83-1610-0752 1.0

83-3640-0665 1.0
83-3650-0387 1.0
83-3270-0371 1.0
83-7280-0270 1.0
83-7910-0105 AR
83-9260-4501 4.0
83-9261-4040 4.0
83-9261-4301 4.0
83-3550-1447 \(\quad 1.0\)
83-9261-4043 2.0

REF. DES. OR FIND NO.
R13
R15
R16, R29

R16,R29
R17
R1 8
R19
R20
R2 1
R22
R23
务 \(\quad \begin{aligned} & R 23 \\ & \text { R }\end{aligned}\)
R27
R2 8
R30
S1
TP1
TP2

DRAWING NUMBER
- MFGR PART NO.
\begin{tabular}{ll} 
0A781-7383 & MINCOM SPEC \\
0A781-7201 & MINCOM SPEC \\
\(0 A 781-7147\) & MINCOM SPEC \\
\(0 A 781-7359\) & MINCOM SPEC \\
& \\
\(0 A 781-7342\) & MINCOM SPEC \\
0A781-7337 & MINCOM SPEC \\
\(77 P R 100\) & BECKMAN \\
0A781-7333 & MINCOM SPEC \\
\(0 A 781-7345\) & MINCOM SPEC \\
OA781-7379 & MINCOM SPEC \\
0A781-7367 & MINCOM SPEC \\
OA781-7220 & MINCOM SPEC \\
OA781-7350 & MINCOM SPEC \\
\(77 P R 10 K\) & BECKMAN \\
TYPE G350-PC & CONTL WIRT \\
\(3-582118-9\) & AMP INC \\
\(3-582118-0\) & AMP INC
\end{tabular}
D ESCRI PTION
PH CATALOG NO. QTY.

RES-FXD,FILM,68K OHM, 1/2W, \(2 \%\) S RES-FXD,FILM, 1.8 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM,4.7K OHM,1/2W,2\%
\begin{tabular}{|c|c|}
\hline 83-1520-7383 & 1.0 \\
\hline 83-1520-7201 & 1.0 \\
\hline 83-1520-7147 & 2.0 \\
\hline 83-1520-7359 & . 1.0 \\
\hline 83-1520-7342 & 1.0 \\
\hline 83-1520-7337 & 1.0 \\
\hline 83-1520-1153 & 1.0 \\
\hline 83-1520-7333 & 1.0 \\
\hline 83-1520-7345 & 1.0 \\
\hline 83-1520-7379 & 1.0 \\
\hline 83-1520-7367 & 1.0 \\
\hline 83-1520-7220 & 1.0 \\
\hline 83-1520-7350 & 1.0 \\
\hline 83-1520-1213 & 1.0 \\
\hline 83-1550-5212 & 1.0 \\
\hline 83-1610-0752 & 1.0 \\
\hline 83-1610-0765 & 1.0 \\
\hline 83-3270-0371 & 1.0 \\
\hline 83-3320-1132 & 2.0 \\
\hline 83-3550-1448 & 1.0 \\
\hline 83-3640-0729 & 1.0 \\
\hline 83-7280-0270 & 1.0 \\
\hline 83-9690-0191 & 3.0 \\
\hline 83-9260-4515 & 1.0 \\
\hline 83-9260-2003 & 1.0 \\
\hline 83-9261-4002 & 1.0 \\
\hline 83-9261-4303 & 1.0 \\
\hline 83-7910-0105 & AR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 00000A667 & B & M INCOM \\
\hline 23059 A016 & A & MINCOM \\
\hline 00000A734-3 & B & MINCOM \\
\hline 23059B041 & F & M INCOM \\
\hline 79-022-094-025 & & ESNA \\
\hline \[
\begin{aligned}
& 7717-2 \\
& \text { MS35206-215 }
\end{aligned}
\] & & THERMALLOY MIL STD \\
\hline MS 35649-42 & & MIL STD \\
\hline \[
\begin{aligned}
& \text { MS } 35338-40 \\
& 1434
\end{aligned}
\] & & MIL STD BIRNBACH \\
\hline
\end{tabular}

HANDLE-EJECTOR,P.C. BD, 1.50 LG
\begin{tabular}{|c|c|}
\hline 83-1520-7383 & 1.0 \\
\hline 83-1520-7201 & 1.0 \\
\hline 83-1520-7147 & 2.0 \\
\hline 83-1520-7359 & 1.0 \\
\hline 83-1520-7342 & 1.0 \\
\hline 83-1520-7337 & 1.0 \\
\hline 83-1520-1153 & 1.0 \\
\hline 83-1520-7333 & 1.0 \\
\hline 83-1520-7345 & 1.0 \\
\hline 83-1520-7379 & 1.0 \\
\hline 83-1520-7367 & 1.0 \\
\hline 83-1520-7220 & 1.0 \\
\hline 83-1520-7350 & 1.0 \\
\hline 83-1520-1213 & 1.0 \\
\hline 83-1550-5212 & 1.0 \\
\hline 83-1610-0752 & 1.0 \\
\hline 83-1610-0765 & 1.0 \\
\hline 83-3270-0371 & 1.0 \\
\hline 83-3320-1132 & 2.0 \\
\hline 83-3550-1448 & 1.0 \\
\hline 83-3640-0729 & 1.0 \\
\hline 83-7280-0270 & 1.0 \\
\hline 83-9690-0191 & 3.0 \\
\hline 83-9260-4515 & 1.0 \\
\hline 83-9260-2003 & 1.0 \\
\hline 83-9261-4002 & 1.0 \\
\hline 83-9261-4303 & 1.0 \\
\hline 83-7910-0105 & AR \\
\hline
\end{tabular}

BRACKET-COMPONENT MTG,SIG ELEC LABEL-IDENT,P.C.BD, ヶ4*
\begin{tabular}{|c|c|}
\hline 83-1520-7383 & 1.0 \\
\hline 83-1520-7201 & 1.0 \\
\hline 83-1520-7147 & 2.0 \\
\hline 83-1520-7359 & 1.0 \\
\hline 83-1520-7342 & 1.0 \\
\hline 83-1520-7337 & 1.0 \\
\hline 83-1520-1153 & 1.0 \\
\hline 83-1520-7333 & 1.0 \\
\hline 83-1520-7345 & 1.0 \\
\hline 83-1520-7379 & 1.0 \\
\hline 83-1520-7367 & 1.0 \\
\hline 83-1520-7220 & 1.0 \\
\hline 83-1520-7350 & 1.0 \\
\hline 83-1520-1213 & 1.0 \\
\hline 83-1550-5212 & 1.0 \\
\hline 83-1610-0752 & 1.0 \\
\hline 83-1610-0765 & 1.0 \\
\hline 83-3270-0371 & 1.0 \\
\hline 83-3320-1132 & 2.0 \\
\hline 83-3550-1448 & 1.0 \\
\hline 83-3640-0729 & 1.0 \\
\hline 83-7280-0270 & 1.0 \\
\hline 83-9690-0191 & 3.0 \\
\hline 83-9260-4515 & 1.0 \\
\hline 83-9260-2003 & 1.0 \\
\hline 83-9261-4002 & 1.0 \\
\hline 83-9261-4303 & 1.0 \\
\hline 83-7910-0105 & AR \\
\hline
\end{tabular}
P.C. BD-RECORD,NAB

83-3640-0729 1.0
PIN-SPRING, . 094 DIA X . 250 LG PAD-TSTR, INLINE, 3 LEADS SCREW-MACH,PAN HD,4-40 X 3/8

NUT-HEX,PLAIN,4-40 X . 250 WD
WASHER-FLAT,GENERAL PURPOSE \#4
WASHER-LOCK, SPLIT,HELICAL,\#4 WIRE-BUS,22GA ROUND

83-7280-0270 1.0 \(\begin{array}{ll}83-9690-0191 & 3.0 \\ 83-9260-4515 & 1.0\end{array}\)

83-9260-2003 1.0
83-9261-4002 1.0
\begin{tabular}{|c|c|}
\hline 83-1520-7383 & 1.0 \\
\hline 83-1520-7201 & 1.0 \\
\hline 83-1520-7147 & 2.0 \\
\hline 83-1520-7359 & 1.0 \\
\hline 83-1520-7342 & 1.0 \\
\hline 83-1520-7337 & 1.0 \\
\hline 83-1520-1153 & 1.0 \\
\hline 83-1520-7333 & 1.0 \\
\hline 83-1520-7345 & 1.0 \\
\hline 83-1520-7379 & 1.0 \\
\hline 83-1520-7367 & 1.0 \\
\hline 83-1520-7220 & 1.0 \\
\hline 83-1520-7350 & 1.0 \\
\hline 83-1520-1213 & 1.0 \\
\hline 83-1550-5212 & 1.0 \\
\hline 83-1610-0752 & 1.0 \\
\hline 83-1610-0765 & 1.0 \\
\hline 83-3270-0371 & 1.0 \\
\hline 83-3320-1132 & 2.0 \\
\hline 83-3550-1448 & 1.0 \\
\hline 83-3640-0729 & 1.0 \\
\hline 83-7280-0270 & 1.0 \\
\hline 83-9690-0191 & 3.0 \\
\hline 83-9260-4515 & 1.0 \\
\hline 83-9260-2003 & 1.0 \\
\hline 83-9261-4002 & 1.0 \\
\hline 83-9261-4303 & 1.0 \\
\hline 83-7910-0105 & AR \\
\hline
\end{tabular}

83-7910-0105 AR

CATALOG NO. 83-4930-1214
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & REF. DES. OR FIND NO. & \begin{tabular}{l}
DRAWING NUMBE \\
- MFGR PART
\end{tabular} & MFGR NAME & DESCRIPTION & Ph Catalog no. & QTY. \\
\hline & C1, \(\mathrm{Cl0,C14}\) & TSD3-15-226 & COMP INC & CAP-FXD, TA, 22UF 15V 20\% & 83-1510-6257 & 3.0 \\
\hline & C2 & \(112 \mathrm{AlB334J}\) & ELECTRO CUBE & CAP-FXD,PAPER, . 33 UF 100V 5\% & 83-1510-4301 & 1.0 \\
\hline & C3 & 112A1B683K & ELECTRO CUBE & CAP-FXD,PAPER,.068 UF, \(100 \mathrm{~V}, 10 \%\) & 83-1510-4332 & 1.0 \\
\hline & C4 & \(112 \mathrm{AlAl04J}\) & ELECTRO-CUBE & CAP-FXD,PAPER, .10UF 50V 5\% & 83-1510-4310 & 1.0 \\
\hline & C5 & 17W1-203J & JEDCO & CAP-FXD, PLSTC, .O2UF,100V, 5\% & 83-1510-4191 & 1.0 \\
\hline & C7 & TSD-1-20-225 & COMP INC & CAP-FXD, TA, 2.2UF 20V \(20 \%\) & 83-1510-6240 & 1.0 \\
\hline & C 8 & TYPE E3FR & MIDWEC & CAP-FXD,PLSTC,.0033UF L 100 V 5\% & 83-1510-4445 & 1.0 \\
\hline & C9 & TSD5-20-686 & COMP INC & CAP-FXD,TA, G8UF 20V 20\% & 83-1510-6211 & 1.0 \\
\hline & C11 & TSD5-20-476 & COMP INC & CAP-FXD,TA, 47UF 20V 20\% & 83-1510-6199 & 1.0 \\
\hline & C12 & TSD5-6-227 & COMP INC & CAP-FXD,TA, 220UF 6V 20\% & 83-1510-6259 & 1.0 \\
\hline & C13 & TSD5-35-156 & COMP INC & CAP-FXD, TA, 15UF 35V 20\% & 83-1510-6209 & 1.0 \\
\hline N & C15 & TSD1-20-475 & COMP INC & CAP-FXD, TA, 4.7UF 20V 20\% & 83-1510-6196 & 1.0 \\
\hline \% & C17 & 210B1C102K & ELECTRO CUBE & CAP-FXD, PLSTC, 001 UF,200V,10\% & 83-1510-4296 & 1.0 \\
\hline 3 & C18, C19 & 464 & ARCO & CAP-VAR,MICA, 25 MMF-280 MMF & 83-1510-6277 & 2.0 \\
\hline 0 & \(K^{1}\) & 701-3 & ELEC-TROL & RELAY-SPDT, 2K OHM 24VDC & 83-1550-3620 & 1.0 \\
\hline & Q1,03,07 & 2N3391A & general elec & TSTR-SI,NPN, PWR; 25 VCB & 83-1530-2230 & 3.0 \\
\hline & Q2 & 2N3684 & & TSTR-SI, N-CHAN,FLD EFFECT 50 MA & 83-1530-2244 & 1.0 \\
\hline & 04 & 2N3405 & G.E. & TSTR-SI,NPN,GEN PUR,50VCE & 83-1530-2232 & 1.0 \\
\hline & 05,06 & 2N2614 & & TSTR-GE,PNP, SIGNAL, \(40 V C B\) & 83-1530-2233 & 2.0 \\
\hline & R1 & 04781-7397 & MINCOM SPEC & RES-FXD,FILM, 390K OHM, 1/2WS \(2 \%\) S & 83-1520-7397 & 1.0 \\
\hline & R2,R25 & 0A781-7372 & MINCOM SPEC & RES-FXD,FILM, 22K OHM, 1/2W, \(2 \%\) S & 83-1520-7372 & 2.0 \\
\hline & R3 & 0A781-7148 & MINCOM SPEC & RES-FXD,FILM, 1OK OHM, 1/2W, \(2 \%\) S & 83-1520-7148 & 1.0 \\
\hline & R4 & 0A781-7175 & MINCOM SPEC & RES-FXD,FILM, 1K OHM, \(1 / 2 \mathrm{~W}, 2 \%\) S & 83-1520-7175 & 1.0 \\
\hline & R5 & 0A781-7174 & MINCOM SPEC & RES-FXD,FILM, 390 OHM, 1/2W,2\% S & 83-1520-7174 & 1.0 \\
\hline & R6,R24 & 04781-7393 & MINCOM & RES-FXD,FILM, 270 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7393 & 2.0 \\
\hline & R7 & 0A781-7373 & MINCOM SPEC & RES-FXD,FILM, 27K OHM, \(/ 1 / 2 \mathrm{~W}, 2 \%\) S & 83-1520-7373 & 1.0 \\
\hline & R8 & 0A781-7387 & MINCOM SPEC & RES-FXD,FILM,100K OHM, 1/2W,2\%S & 83-1520-7387 & 1.0 \\
\hline & R9,R14 & 04781-7369 & MINCOM SPEC & RES-FXD,FILM,8.2K OHM, 1/2W,2\%S & 83-1520-7369 & 2.0 \\
\hline & R10 & 04781-7360 & MINCOM SPEC & RES-FXD,FILM, 2. \(2 \mathrm{~K} \mathrm{OHM,1/2W,2} \mathrm{\% S}\) & 83-1520-7360 & 1.0 \\
\hline \(\stackrel{\infty}{\sim}\) & R12 & 0A781-7148 & MINCOM SPEC & RES-FXD,FILM,1OK OHM,1/2W,2\% S & 83-1520-7148 & 1.0 \\
\hline
\end{tabular}

TITLE PWR SUP ASSY－SIG ELECT，\(: 1 /\) METER
CATIL！G NO． \(33-5920-0522\)

REF．DES．OR FIND NO．

\section*{－MFGR PART NO．}

HC5020A

\section*{230594052}

2N3055
23009 A004
CMC－28A
ВВ TO－3－62 23059A017 23059 A011 3059A0 230594000 23059 AO55

KS35206－227

N：S35338－4．
7856
1414－6

DRAWING NUMHER FIFGR NAI：E D E S CRI P T I ii ；

CAP－FXD，ELECT，2000 UF，50 1．VNC
WETER－riICRFIVOLT，ILLUi：DIAL
R．C．A．
TSTR－SI，NPN，\(\quad\) MUR， 100 VCB
A MINCON
XFFR－PHR，48－6 C．PS． 115 V 10：
SPRAGIJE
M INCOM
D Na L COH
A I COI？
Fis）InCor
F Nincor

1IIL STD

PIIL STD
WALSCO
\(\mathrm{HH}^{\mathrm{H}} \mathrm{Si} \mathrm{IITH}\)

RETAINEP－CAP iTC，RING TYPE PAD－TSTR， 1.05 K \(\quad 1.563 \mathrm{LG}\) CHAS－COHP FTG，SIG ELFCTRENICS PL／：TE－PTG，\＆ETE？：ONUIE MRKT－VETER TG，SIG FLECTRLAICS SPACER－1 ETEK pi＊FL，SIG ELEC P．C．PDD ASSY－PHR SUP，SIG ELEC WHT－HEX，SI PATT，6－32 K ．250 ：U SCRE：\(\because-1: A C F, P\) ：\(\because\) ， \(6-32 \times 5 / 1\)
 HASHER－FL／T，S PATT， 6
1！：SHER－LICl，SILIT，引た IWSULATOR－：NSI！F！，．1 TERF：STRIP－C！：）I＇C，t＇SCRE：ATG

PH CATALLC ；．VTY．
\(83-151(-2075\) 1．
\(93-2551-3051.0\)
\(83-1530-21571.0\)
\(\because 3-354-1111\)
83－1650－61：\(: 1.1\)

3？－331（：－i．5： 1.0
－シーラ32 •••1）2i 1．
 －oner－1］ミ1 3－33tr－（ \(33-4900101\) 1．0 シーが2いい一2゙02 7．1
 \(\because \because-20.1-150\)－





Figure 50. Signal Electronics Power Supply Assembly with Meter
——蒌
——
「園
——茖
「3
ए多

KHVF F


\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
 \\
－raf：FR PA！？TMr．
\end{tabular} & \(\therefore\)－i，AA．te & UFSC：I D T J O！ &  & ņ\％． \\
\hline C．\(), \mathrm{C} 4\) & WII．C．SJシac．アフ） & i．． \(\mathrm{TI}_{\text {S }}\) STH &  & 82－1510－6085 & 2.0 \\
\hline C 3 & Tyur Rpll & AFErumix &  & 52－1510－1074 & 1．0 \\
\hline CR1，CRP，CR3，CR4，CRS & 14LNO？ &  & UFr．T－SI，SFi．ICinn ，InOPIV， 1 A & 92－1530－017？ & 4.0 \\
\hline CRA & 19\％54A & TEXAS 1 CST & WITHE－SI，7FMER，K．8V 400 ivilu & 83－1530－0097 & ］． 0 \\
\hline F1． & 31701.5 & 1．ITTFI．HISF &  & \(8.3-7550-8009\) & 1．0 \\
\hline n）， 03,04 & 203417 & r．t． & TSTR－SILICON，NPM，SWAIL．SIGNAL & 83－1530－7236 & 3.0 \\
\hline pl &  &  &  & 83－1520－8．6．1 & 1.0 \\
\hline D） & 4334 & MH．．ITF &  & 83－1520－7771 & 1.0 \\
\hline p2 &  & Wlurru SPFC． &  & \(83-1520-7148\) & 1.0 \\
\hline 04,26 & 0ヘ7×1－714\％ & \(\because\) ImCri：SPFC &  & ¢2－1520－7147 & 7.0 \\
\hline Ph & 0＾741－735n & Whargam SpFC & RFS－FXN，FIIN， 330 חHM， \(1 / 2.6,7 \% S\) & 83－1520－7350 & 3． 0 \\
\hline －7 & 0＾7：1－727） & NTMC口：SPFC &  & 83－152n－7372 & 1．n \\
\hline Ps & 0＾7行1－73As & ATIMrria．SPFC． & RFS－FX & 83－1．520－7368 & 1.0 \\
\hline F 11 & I．ITTIF NFVII & OHin 1 TF & RFS－FX ，CrIMP， 770 ПHM 1\％： \(5 \%\) & 83－9520－4091 & 1.0 \\
\hline 017 &  & \(\because T I-R-110 / 6\) &  & 83－9520－4140 & 1． 0 \\
\hline 012 & I．ITTIF GEVI！ & ก\％aitfo &  & 83－95うn－4137 & 1.0 \\
\hline 1 & 1010013 & 1．ITTIGFIISF & C．I．TP－FIISF，IIIG，PHISPHCIR RRINT．F & 83－1\＆2n－0190 & 2．n \\
\hline \(?\) & 23050nction & STMr．0ッ & P．C．KII－PM的FR SIIPPLY & 83－3640－0597 & 1． 0 \\
\hline 3 & SF－Li／2 UPACS & UW＇JTFO SHCE & FYFLFT－RRASS，FLAMSFO，－1J 2 X .171 & 83－7290－0091 & 2．n \\
\hline 4 & 7117－7 & THFRGAALI． 11 Y & PAU－TSTR，INI．INF， 3 LFAnS & 83－9690－0191 & 2.0 \\
\hline 5 & 1434 & Q JRMRAC．4 &  & 83－7910－0105 & \(A D\) \\
\hline
\end{tabular}

TITLE P.C. BD ASSY-LNE AMP,SIG ELECT
CATALOG NO. 83-4930-1091

REF. DES. OR FIND NO.
C 1
\(\mathrm{C} 2, \mathrm{C} 6\)
C 3
C \(4, \mathrm{C} 5\)
C7
C8
C 9
C10
C11,C12
C13
C14
C15
CR1,CR2,CR3, CR4, CR5,CR6
CR 7
Q1, Q2, 03

04
Q5, Q6
\(R 1\)
\(R 2, R 17, R 21\)
R3
R4
\(R 5, R 8, R 15, R 22\)
R6
R7
R9
R10,R12
R11
R13

DRAWING NUMBER MFGR NAME DESCRIPTION - MFGR PART NO.
\begin{tabular}{|c|c|c|c|c|c|}
\hline TSD5-35-156 & COMP INC & CAP-FXD, TA, 15 UF 35 V & 20\% & 83-1510-6209 & 1.0 \\
\hline TSD4-20-226 & COMP INC & CAP-FXD,TA, 22UF & 20V 20\% & 83-1510-6203 & 2.0 \\
\hline \(610 \mathrm{B1B103J}\) & ELECTRO CUBE & CAP-FXD, POLYCARBON,.01 & 1UF, 100 V & 83-1510-4227 & 1.0 \\
\hline BR 150-50 & CORNELL DUBL & CAP-FXD,ELECT, 150UF & 50 V & 83-1510-2212 & 2.0 \\
\hline TSD5-20-476 & COMP INC & CAP-FXD,TA, 47 UF & 20V 20\% & 83-1510-6199 & 1.0 \\
\hline DM 15F500J & ARCO & CAP-FXD,MICA, 50PF & 500V 5\% & 83-1510-5148 & 1.0 \\
\hline TSD1-35-105 & COMP INC & CAP-FXD, TA, IUF & 35V 20\% & 83-1510-6208 & 1.0 \\
\hline TSD5-10-157 & COMP INC & CAP-FXD,TA, 150UF & F \(10 \mathrm{~V} 20 \%\) & 83-1510-6245 & 1.0 \\
\hline TYPE BPD & AEROVOX & CAP-FXD,CER, 1000PF 1 & 1000 V GMV & 83-1510-1024 & 2.0 \\
\hline DM 15F201J & ARCO & CAP-FXD,MICA, 200PF & 500V 5\% & 83-1510-5214 & 1.0 \\
\hline BR500-25 & CORNELL DUBL & CAP-FXD, ELECT, 500UF & 25V & 83-1510-2044 & 1.0 \\
\hline P222MC & HOPKINS & CAP-FXD,PLSTC, .22UF & 200V 5\% & 83-1510-4167 & 1.0 \\
\hline 1 N 4002 & MOTOROLA & RECT-SI, SEMI COND, 100PI & IV, 1 A & 83-1530-0122 & 7.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2N3391A & GENERAL & ELEC & TSTR-SI, NPN, & PWR & & 25 & VCB & & 83-1530-2230 & 3.0 \\
\hline 2N3638 & \multicolumn{2}{|l|}{FAIRCHILD} & TSTR-SI, PNP, & SW, & & 25 & & & 83-1530-2155 & 1.0 \\
\hline 2N3054 & \multicolumn{2}{|l|}{R.C.A.} & TSTR-SI,NPN, H & PWR & & 100 HF & HFE & & 83-1530-2227 & 2.0 \\
\hline 04781-7362 & M INCOM & SPEC & RES-FXD,FILM, 3 & . 6 K & OHM & 1/2W, & 2\% & & 83-1520-7362 & 1.0 \\
\hline 04781-7175 & M INCOM & SPEC & RES-FXD,FILM, 1 & K OHM & HM, 1 & 2W, 2\% & S & S & 83-1520-7175 & 3.0 \\
\hline 04781-7368 & MINCOM & SPEC & RES-FXD,FILM, 7 & . 5 K & OHM, & 1/2W, & 2\% & & 83-1520-7368 & 1.0 \\
\hline 77PR1K & \multicolumn{2}{|l|}{BECKMAN} & RES-VAR, COMP, & OH & M, 3 & \(4 \mathrm{~W}, 1\) & & & 83-1520-1211 & 1.0 \\
\hline 0A781-7148 & MINCOM & SPEC & RES-FXD,FILM, 1 & K OH & OHM, 1 & / 2W, 2\% & \% & S & 83-1520-7148 & 4.0 \\
\hline , LITTLE DEVIL & \multicolumn{2}{|l|}{OHMITE} & \multicolumn{6}{|l|}{RES-FXD, COMP, 820KOHM \(1 / 2 \mathrm{~W} 5\)} & 83-9520-3218 & 1.0 \\
\hline OA781-7398 & \multicolumn{2}{|l|}{\begin{tabular}{l}
OHMITE \\
MINCOM SPEC
\end{tabular}} & RES-FXD,FILM, 4 & 30 K & OHM, & 1/2W, & 2\% & & 83-1520-7398 & 1.0 \\
\hline 04781-7359 & M INCOM & SPEC & RES-FXD,FILM, 1 & . 2 K & OHM, & 1/2W, & 2\% & & 83-1520-7359 & 1.0 \\
\hline 04781-7221 & MINCOM & SPEC & RES-FXD,FILM, 1 & 00 O & OHM, 1 & / 2W, 2\% & \% & S & 83-1520-7221 & 2.0 \\
\hline 04781-7346 & MINCOM & SPEC & RES-FXD,FILM, 2 & 00 O & OHM, 1 & / 2W, 2\% & \% & S & 83-1520-7346 & 1.0 \\
\hline 3067P-1-502 & \multicolumn{2}{|l|}{BOURNS} & RES-VAR, WW, & 5 K & OHM & 1/2W & 10\% & & 83-1520-1319 & 1.0 \\
\hline
\end{tabular}


REF. DES. OR FIND NO.
C1, C6
C2
C3
C4
C5
C7,C8
C9, C10
C11
K1
K2
L1
Q1, \(22,03,04,05\)
R1, R5
R2
R3
R4
R6, R25
R7, R18, R21
R8
R9
R10
R11, R12, R13, R14, R15
R16
R17
R19, R22
R20, R23
R24
R26

T1
- MFGR PART NO.
\begin{tabular}{|c|c|c|c|c|c|}
\hline TSD4-20-226 & COMP INC & CAP-FXD, TA, & 22UF & 20 V & 20\% \\
\hline DM15F271J & ARCO & CAP-FXD,MICA, & 270 PF & 500 V & 5\% \\
\hline TSD5-20-686 & COMP INC & CAP-FXD, TA, & 68 UF & 20 V & 20\% \\
\hline TSD5-6-227 & COMP INC & CAP-FXD, TA, & 220UF & 6 V & 20\% \\
\hline E3XFR & MIDWEC & CAP-FXD, PLSTC, & , .010UF & 100 V & 5 \\
\hline TYPE E3FR & MIDWEC & CAP-FXD, PLS . & . 0068 UF & 100 V & 5\% \\
\hline TSD5-35-156 & COMP INC & CAP-FXD, TA, 1 & 15 UF 35V & 20\% & \\
\hline DM15F501J & ARCO & CAP-FXD,MICA, & 500 PF & 500 V & 5\% \\
\hline
\end{tabular}

701-3
201-3
70F333A1
2N3391A
LITTLE DEVIL
OA781-7344
0A781-7393
0A781-7350
04781-7373
0A781-7389
0A781-7174
0A781-7367
0A781-7375
0A781-7201
0A781-7147
79P R5K
79P R1MEG
79P R20K
0A781-7360
0A781-7217

RELAY-SPDT, 2 K OHM 24 VDC RELAY-SPST, 2 K OHM 24 V DC

CHOKE-RF, 3.3 MH \(5 \%\)
GENERAL ELEC TSTR-SI,NPN, PWR, 25 VCB
RES-FXD, COMP, \(\quad 1 \mathrm{M}\) OHM \(1 / 2 \mathrm{~W}\) 5\% RES-FXD,FILM, 120 OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, 270 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, 330 OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, \(27 \mathrm{~K} O H M, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, \(180 \mathrm{~K} O H M, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, 390 OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM,6.8K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, 33 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, \(1.8 \mathrm{~K} O H M, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM,4.7K OHM, 1/2W, \(2 \%\) RES-VAR,CER, 5 K OHM, \(3 / 4 \mathrm{~W}, 10 \%\) RES-VAR, FILM, 1 NEG OHM RES-VAR,FILM, 20 K OHM
RES-FXD,FILM, \(2.2 \mathrm{~K} O H M, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RES-FXD,FILM, 680 OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\)

XMFR-AF, 2.0 OHM PRIM-95 OHM
PC BD-PREAMP, OVERDUB HANDLE-E JECTOR, P.C. BD, 1.50 LG PIN-SPRING, . 094 DIA X . 250 LG PAD-TSTR, INLINE, 3 LEADS LABEL-IDENT,P.C. BD,*7 9* BRKT-COMP,P.C.BD, PREAMP

PH CATALOG NO. OTY.
\begin{tabular}{ll}
\(83-1510-6203\) & 2.0 \\
\(83-1510-5096\) & 1.0 \\
\(83-1510-6211\) & 1.0 \\
\(83-1510-6259\) & 1.0 \\
\(83-1510-4449\) & 1.0 \\
\(83-1510-4447\) & 2.0 \\
\(83-1510-6209\) & 2.0 \\
\(83-1510-5120\) & 1.0 \\
& \\
\(83-1550-3620\) & 1.0 \\
\(83-1550-3621\) & 1.0 \\
\(83-1540-0410\) & 1.0 \\
& \\
\(83-1530-2230\) & 5.0 \\
\(83-9520-3220\) & 2.0 \\
\(83-1520-7344\) & 1.0 \\
\(83-1520-7393\) & 1.0 \\
\(83-1520-7350\) & 1.0 \\
\(83-1520-7373\) & 2.0 \\
\(83-1520-7389\) & 3.0 \\
\(83-1520-7174\) & 1.0 \\
\(83-1520-7367\) & 1.0 \\
\(83-1520-7375\) & 1.0 \\
\(83-1520-7201\) & 5.0 \\
\(83-1520-7147\) & 1.0 \\
\(83-1520-1420\) & 1.0 \\
\(83-1520-1421\) & 2.0 \\
\(83-1520-1422\) & 2.0 \\
\(83-1520-7360\) & 1.0 \\
\(83-1520-7218\) & 1.0 \\
\(83-1540-1284\) & 1.0 \\
\(83-3640-1507\) & 1.0 \\
\(83-3270-0371\) & 1.0 \\
\(83-7280-0270\) & 1.0 \\
\(83-9690-0191\) & 5.0 \\
\(83-3550-1452\) & 1.0 \\
\(83-3320-1974\) & 1.0 \\
8 & \\
83
\end{tabular}

TITLE PC BD ASSY-PREAMP,OVERDUB15/30
CATALOG NO. 83-4930-2511
\begin{tabular}{|c|c|c|c|c|c|}
\hline REF. DES. OR FIND NO. & \begin{tabular}{l}
DRAWING NUMBER \\
- MFGR PART
\end{tabular} & MFGR NAME & DESSCRIPITISN & PH CATALOG NO. & QTY. \\
\hline \(\mathrm{Cl}, \mathrm{C} 6\) & TSD4-20-226 & COMP INC & CAP-FXD,TA, 22UF 20V 20\% & 83-1510-6203 & 2.0 \\
\hline C2 & DM 15F271J & \(\triangle R C O\) & CAP-FXD,MICA, 270PF 500V \(5 \%\) & 83-1510-5096 & 1.0 \\
\hline C3 & TSD5-20-686 & COMP INC & CAP-FXD,TA, 68UF 20V \(20 \%\) & 83-1510-6211 & 1.0 \\
\hline C4 & TSD5-6-227 & COMP INC & CAP-FXD,TA, 220UF 6V 20\% & 83-1510-6259 & 1.0 \\
\hline C5 & E3XFR & MIDWEC & CAP-FXD,PLSTC, .010UF loov 5\% & 83-1510-4449 & 1.0 \\
\hline \[
\begin{aligned}
& C 7, C 8 \\
& C 9, C 10 \\
& \text { C11 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TYPE E3FR } \\
& \text { TSD5-35-156 } \\
& \text { DM15F501J }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MIDWEC } \\
& \text { COMP INC } \\
& \text { ARCO }
\end{aligned}
\] & \[
\begin{array}{llll}
\text { CAP-FXD, PLS } .0068 U F & 100 \mathrm{~V} & 5 \% \\
\text { CAP-FXD, TA, } 15 \mathrm{UF} 35 \mathrm{~V} & 20 \% & \\
\text { CAP-FXD,MICA, } & 500 \mathrm{PF} & 500 \mathrm{~V} & 5 \%
\end{array}
\] & \[
\begin{aligned}
& 83-1510-4447 \\
& 83-1510-6209 \\
& 83-1510-5120
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 1.0
\end{aligned}
\] \\
\hline K1 & 701-3 & ELEC-TROL & RELAY-SPDT, 2 K OHM 24 VDC & 83-1550-3620 & 1.0 \\
\hline K2 & 201-3 & EL.ECTROL & RELAY-SPST, 2 K OHM 24 V DC & 83-1550-3621 & 1.0 \\
\hline L1 & 70F333AI & J.W. MILLER & CHOKE-RF, 3.3 MH 5 \% & 83-1540-0410 & 1.0 \\
\hline 01,02,03,04,05 & 2N3391A & GENERAL ELEC & TSTR-SI,NPN, PWR, 25 VCB & 83-1530-2230 & 5.0 \\
\hline R1, R5 & LITTLE DEVIL & OHMITE & \[
\text { RES-FXD, COMP, } \quad 1 M \text { OHM } 1 / 2 \mathrm{~W} 5 \%
\] & 83-9520-3220 & 2.0 \\
\hline R2 & 0A781-7344 & MINCOM SPEC & \[
\text { RES-FXD,FILM, } 120 \text { OHM, } 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}
\] & \[
83-1520-7344
\] & 1.0 \\
\hline R3 & OA781-7393 & MINCOM & RES-FXD,FILM, 270K OHM, 1/2W, \(2 \% \mathrm{~S}\) & 83-1520-7393 & 1.0 \\
\hline R4 & 0A781-7350 & MINCOM SPEC & RES-FXD,FILM, 330 OHM, 1/2W, \(2 \%\) S & 83-1520-7350 & 1.0 \\
\hline R6,R25 & 04781-7373 & MINCOM SPEC & RES-FXD,FILM, 27 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7373 & 2.0 \\
\hline R7,R18,R21 & 04781-7389 & MINCOM SPEC & RES-FXD,FILM, 180 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7389 & 3.0 \\
\hline R8 & OA781-7174 & MINCOM SPEC & RES-FXD,F1LM, 390 OHM, 1/2W, \(2 \%\) S & 83-1520-7174 & 1.0 \\
\hline R9 & 0A781-7367 & MINCOM SPEC & RES-FXD,FILM, 6.8 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7367 & 1.0 \\
\hline R10 & 04781-7375 & MINCOM SPEC & RES-FXD,FILM, 33K OHM, 1/2W, \(2 \%\) S & 83-1520-7375 & 1.0 \\
\hline R11,R12,R15 & 0A781-7201 & MINCOM SPEC & RES-FXD,FILM, 1.8K OHM, 1/2W, \(2 \%\) S & 83-1520-7201 & 3.0 \\
\hline R13, R14 & 0A781-7264 & MINCOM SPEC & RES-FXD,FILM,910 OHM, 1/2W, \(2 \% \mathrm{~S}\) & 83-1520-7264 & 2.0 \\
\hline R16 & 0A781-7147 & MINCOM SPEC & RES-FXD,FILM,4.7K OHM, 1/2W, \(2 \%\) & 83-1520-7147 & 1.0 \\
\hline R17 & 79P R5K & BECKMAN & RES-VAR,CER, 5 K OHM, 3/4W, 10\% & 83-1520-1420 & 1.0 \\
\hline R19,R22 & 79P R1MEG & BECKMAN & RES-VAR, FILM, 1 MEG OHM & 83-1520-1421 & 2.0 \\
\hline R20,R23 & 79P R20K & BECKMAN & RES-VAR,FILM, 20 K OHM & 83-1520-1422 & 2.0 \\
\hline R24 & 04781-7360 & MINCOM SPEC & RES-FXD,FILM,2.2K OHM, 1/2W, \(2 \%\) S & 83-1520-7360 & 1.0 \\
\hline
\end{tabular}

TITLE PC BD ASSY-PREAMP, OVERDUB15/30 CATALOG NO. 83-4930-2511

REF. DES. OR FIND NO.

T1

DRAWING NUMBER - MFGR PART NO.

0A781-7217

MFGR NAME
DESCRIPTION
PH CATALOG NO. QTY.

MINCOM SPEC RES-FXD,FILM,680 OHM,1/2W,2\% S
83-1520-7218 1.0
\(T R-145 \quad B V-3584\)

23059B091
D MINCOM
00000A667
B MINCOM
79-022-094-0250 ESNA

7717-2
23059A092

THERMALLOY
MINCOM
riEV A
TITLE P.C. BD ASSY-EXTEMDER
CATALIG M. シ3-4930-1746

REF. DES. OR FIND NO.
drahing numper migh nabie - HFGR PART NO.

23050All \(A\) HINCOM
2VK22S/1-2 VIKIING MS35206-217 HIL STD

MS35338-40 RIIL STD
MIL STD P.IBB9^CH ALWHA \(\because\) IRE

Ph CATALEG RG. ©TY. 33-364(:-1139 1.0 2.3-1616-6.645 1.0 93-6260-4517 2.0 :30-5261-4012 2.0 :3-9201-4:303 2.0 ?3-701(:-01.05 AR a3-7910-0388 A:


REF. DES. OR FIND NO
C 1
\(\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 9\)

C3
C5,C11
C6,C10
C8
C12,C13
C14
2
\(\sim\)\(\quad C 15\)
C16
C18
C19
CR1,CR2
L1,L2

Q1
Q2, Q3, Q4
Q5
Q6, Q7

R1, R25
R2
R3
R4,R28,R32
R5
R6
\(R 8, R 29, R 30\)
R9,R13
R10
R11

DRAWING NUMBER
- MFGR PART NO.

DM15F501J
TSD5-35-156 TSD5-20-476 TSD5-6-227 192P15392 WMF 1 S47
4610
1N270
70F333AI

2N3684
2N3391A
2N3405
2N2614

0A781-7379
0A781-7369
0A781-7360
3067P-1-502
0A781-7387
\(0 A 781-7367\)
0A781-7349 0A781-7147 0A781-7354
0A781-7375
0А781-7148
7717-2 THERMALLOY PAD-TSTR, INLINE, 3 LEADS

TSD-1-20-225 COMP INC CAP-FXD,TA, 2.2UF 20V 20\%
TSD3-15-226 COMP INC CAP-FXD,TA, 22UF 15V 20\%
TSD5-10-157 COMP INC CAP-FXD,TA, 150UF 10V 20\%
\(112 A 1 C 223 \mathrm{~J}\) ELECTRO CUBE CAP-FXD,PAPER, .022UF 200V 5\%
\(112 A 1 A 104 \mathrm{~J}\) ELECTRO-CUBE CAP-FXD,PAPER, . \(10 \mathrm{JF} 50 \mathrm{~V} 5 \%\)
MFGR NAME D ES C R I P T I O N

THERMALLOY PAD-TSTR, INLINE, 3 LEADS

ARCO CAP-FXD,MICA, 500PF 500V 5\%
COMP INC CAP-FXD, TA, 15UF 35V 20\%
COMP INC CAP-FXD,TA, \(47 \mathrm{UF} 20 \mathrm{~V} 20 \%\) COMP INC CAP-FXD,TA, 220UF 6V 20\% SPRAGUE CAP-FXD,PAPER, .O15UF, 200V, 10\% CORNL-DUBLR CAP-FXD,PLSTC,.047UF 100V \(10 \%\) ARCO
HUGHES
J.W. MILLER

CHOKE-RF, 3. 3 MH \(5 \%\)

TSTR-SI,N-CHAN,FLD EFFECT 50MA
GENERAL ELEC TSTR-SI,NPN, PWR, 25 VCB G.E. TSTR-SI,NPN,GEN PUR,50VCE TSTR-GE,PNP, SIGNAL, 40 VCB

MINCOM SPEC RES-FXD,FILM,47K OHM,1/2W,2\% S
MINCOM SPEC RES-FXD,FILM,8. 2 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) MINCOM SPEC RES-FXD,FILM,2.2K OHM,1/2W,2\%S BOURNS MINCOM SPEC MINCOM SPEC MINCOM SPEC MINCOM SPEC MINCOM SPEC MINCOM SPEC MINCOM SPEC

PH CATALOG NO. QTY.
\begin{tabular}{|c|c|}
\hline 83-9690-0191 & 3.0 \\
\hline 83-1510-6240 & 1.0 \\
\hline 83-1510-6257 & 4.0 \\
\hline 83-1510-6245 & 1.0 \\
\hline 83-1510-4475 & 2.0 \\
\hline 83-1510-4310 & 2.0 \\
\hline 83-1510-5120 & 1.0 \\
\hline 83-1510-6209 & 2.0 \\
\hline 83-1510-6199 & 1.0 \\
\hline 83-1510-6259 & 1.0 \\
\hline 83-1510-4416 & 1.0 \\
\hline 83-1510-4481 & 1.0 \\
\hline 83-1510-6252 & 1.0 \\
\hline 83-1530-0263 & 2.0 \\
\hline 83-1540-0410 & 2.0 \\
\hline 83-1530-2244 & 1.0 \\
\hline 83-1530-2230 & 3.0 \\
\hline 83-1530-2232 & 1.0 \\
\hline 83-1530-2233 & 2.0 \\
\hline 83-1520-7379 & 2.0 \\
\hline 83-1520-7369 & 1.0 \\
\hline 83-1520-7360 & 1.0 \\
\hline 83-1520-1319 & 3.0 \\
\hline 83-1520-7387 & 1.0 \\
\hline 83-1520-7367 & 1.0 \\
\hline 83-1520-7349 & 1.0 \\
\hline 83-1520-7147 & 3.0 \\
\hline 83-1520-7354 & 2.0 \\
\hline 83-1520-7375 & 1.0 \\
\hline 83-1520-7148 & 1.0 \\
\hline
\end{tabular}

TITLE P.C. BD ASSY-DYNATRACK,RECORD
CATALOG NO. 83-4930-1006

\begin{tabular}{|c|c|c|c|c|c|}
\hline REF. DES. OR FIND NO. & \begin{tabular}{l}
DRAWING NUMBER \\
- MFGR PART NO.
\end{tabular} & MFGR NAME & DESCRIPTION & PH CATALOG NO. & QTY. \\
\hline C1, C6, C 10 & TSD4-20-226 & COMP INC & CAP-FXD,TA, 22UF 20V 20\% & 83-1510-6203 & 3.0 \\
\hline C2 & DM15F271J & ARCO & CAP-FXD,MICA, 270PF 500V 5\% & 83-1510-5096 & 1.0 \\
\hline C3 & TSD5-20-686 & COMP INC & CAP-FXD,TA, 68UF 20V 20\% & 83-1510-6211 & 1.0 \\
\hline C4 & TSD5-6-227 & COMP INC & CAP-FXD,TA, 220UF 6V 20\% & 83-1510-6259 & 1.0 \\
\hline C5, C9 & E3XFR & MIDWEC & CAP-FXD,PLSTC, .010UF 100V 5\% & 83-1510-4449 & 2.0 \\
\hline C7 & TYPE E3FR & MIDWEC & CAP-FXD,PLSTC,.0047UF 100V \(5 \%\) & 83-1510-4446 & 1.0 \\
\hline C 8 & DM15F621J & ARCO & CAP-FXD,MICA, 620PF 300V 5\% & 83-1510-5123 & 1.0 \\
\hline C11 & TYPE E3FR & MIDWEC & CAP-FXD, PLS .0068UF 100V 5\% & 83-1510-4447 & 1.0 \\
\hline C12 & E3XFR & MIDWEC & CAP-FXD,PLSTC,.033UF 100V 5\% & 83-1510-4452 & 1.0 \\
\hline C13 & E3XFR & MIDWEC & CAP-FXD, PLSTC . 047 UF 100V 5\% & 83-1510-4453 & 1.0 \\
\hline C14 & TSD2-35-225 & COMP INC & CAP-FXD,TA, 2.2UF 35V 20\% & 83-1510-6207 & 1.0 \\
\hline C15 & E3XFR & MIDWEC & CAP-FXD,PLSTC, -10UF, 100V, 5\% & 83-1510-4456 & 1.0 \\
\hline C16 & \(112 \mathrm{AlC824}\) & ELECTRO CUBE & CAP-FXD PAPER .82UF 200V 20\% & 83-1510-4309 & 1.0 \\
\hline C17,C18 & TSD5-35-156 & COMP INC & CAP-FXD, TA, \(15 \mathrm{UF} 35 \mathrm{~V} 20 \%\) & 83-1510-6209 & 2.0 \\
\hline DS 1 & NE-2 & CHICAGO MIN & LAMP-GLOW, NEON & 83-1550-2596 & 1.0 \\
\hline \[
\begin{aligned}
& \text { Q1, Q2, Q3, } 04, Q 5,06, Q 7, Q 8, Q 9, \\
& Q 10
\end{aligned}
\] & 2N3391A & GENERAL ELEC & TSTR-SI,NPN, PWR, 25 VCB & 83-1530-2230 & 10.0 \\
\hline Q1 1 & 2N3638 & FAIRCHILD & TSTR-SI, PNP, SW, 25 VCB & 83-1530-2155 & 1.0 \\
\hline Q12 & 2N4056 & GE & TSTR-2N4056, SI, HIGH VOLTAGE & 83-1530-2332 & 1.0 \\
\hline \[
\begin{aligned}
& \text { R1, R5 } \\
& \text { R2, R31 } \\
& \text { R3 }
\end{aligned}
\] & \begin{tabular}{l}
LITTLE DEVIL 0A781-7344 \\
04781-7393
\end{tabular} & \begin{tabular}{l}
OHMITE \\
MINCOM SPEC \\
M INCOM
\end{tabular} & RES-FXD,COMP, 1 M OHM 1/2W 5\% RES-FXD,FILM,120 OHM,1/2W,2\% S RES-FXD,FILM,270K OHM,1/2W,2\%S & \[
\begin{aligned}
& 83-9520-3220 \\
& 83-1520-7344 \\
& 83-1520-7393
\end{aligned}
\] & 2.0
2.0
1.0 \\
\hline \[
\begin{aligned}
& \text { R4 } \\
& \text { R6, R26 }
\end{aligned}
\] & \[
\begin{aligned}
& 0 A 781=7350 \\
& 0 A 781=7373
\end{aligned}
\] & MINCOM SPEC MINCOM SPEC & \[
\text { RES-FXD, FIEM, } 330 \text { OHM, 1/2W, } 2 \% \text { S }
\] & \(83-1520=7350\) & \(\frac{1}{2}: 8\) \\
\hline R7,R47 & 0A781-7389 & MINCOM SPEC & RES-FXD,FILM, 180 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7389 & 2.0 \\
\hline R8 & 04781-7174 & MINCOM SPEC & RES-FXD,FILM, 390 OHM, 1/2W, \(2 \%\) S & 83-1520-7174 & 1.0 \\
\hline R9,R17,R37 & 0A781-7367 & MINCOM SPEC & RES-FXD,FILM, 6.8K OHM, \(1 / 2 \mathrm{~W}, 2 \mathrm{~K}\) & 83-1520-7367 & 3.0 \\
\hline R10 & 0A781-7375 & MINCOM SPEC & RES-FXD,FILM, 33 K OHM, 1/2W,2\% S & 83-1520-7375 & 1.0 \\
\hline \(\mathrm{R} 11, \mathrm{R} 12, \mathrm{R} 13, \mathrm{R} 14, \mathrm{R} 36, \mathrm{R} 39\) & 0A781-7201 & MINCOM SPEC & RES-FXD,FILM, 1.8 K OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7201 & 6.0 \\
\hline \[
R 15, R 27
\] & 79P R5K & BECKMAN & RES-VAR,CER, 5 K OHM, \(3 / 4 \mathrm{~W}, 10 \%\) & 83-1520-1420 & 2.0 \\
\hline \[
R 16, R 29, R 32, R 41
\] & 0A781-7148 & MINCOM SPEC & RES-FXD,FILM,10K OHM, 1/2W,2\% S & 83-1520-7148 & 4.0 \\
\hline
\end{tabular}

TITLE P.C.BD ASSY-DYNATRACK,REPRO
CATALOG NO. 83-4930-1964
- \(-\ldots-\ldots-\ldots-\ldots-\ldots\) - \(-\ldots\) - \(-\ldots\) T

REQUIREMENT
REF. DES. OR FIND NO.
\(R 18, R 33\)
R19
R2 0
R21
R22
R23
R24
R25,R38
R28
R30

R34
\(\approx \quad R 35\)
R40
\(R 42, R 43\)
R44
R45,R51
R46
R48
R49
R50
R52

S 1
S2
DRAWING NUMBER - MFGR PART NO.


PH CATALOG NO. QTY.
\begin{tabular}{ll}
\(83-1520-7387\) & 2.0 \\
\(83-1520-7383\) & 1.0 \\
\(83-9520-3224\) & 1.0 \\
\(83-9520-3250\) & 1.0 \\
\(83-1520-7399\) & 1.0 \\
\(83-1520-7363\) & 1.0 \\
\(83-1520-7372\) & 1.0 \\
\(83-1520-7360\) & 2.0 \\
\(83-1520-7391\) & 1.0 \\
\(83-1520-7361\) & 1.0 \\
\(83-1520-7149\) & 1.0 \\
\(83-1520-7365\) & 1.0 \\
\(83-1520-7337\) & 1.0 \\
\(83-1520-7379\) & 2.0 \\
\(83-1520-7381\) & 1.0 \\
\(83-1520-7145\) & 2.0 \\
\(83-1520-7353\) & 1.0 \\
\(83-1520-1421\) & 1.0 \\
\(83-1520-1422\) & 1.0 \\
\(83-1520-1433\) & 1.0 \\
\(83-1520-7142\) & 1.0 \\
\(83-1550-5430\) & 1.0 \\
\(83-1550-5429\) & 1.0 \\
\(83-1620-0091\) & 1.0 \\
\(83-3270-0371\) & 1.0 \\
\(83-7280-0270\) & 1.0 \\
\(83-9690-0191\) & 10.0 \\
\(840-1274\) & 1.0 \\
8 & \\
83
\end{tabular}

REF. DES. OR FIND NO.

\section*{DRAWING NUMBER}

MFGR NAME
DESCRIPTION
- MFGR PART NO.

MS35338-39

MS 35206-202 00000A734-9

MIL STD
WASHER-LOCK, SPLIT,HELICAL, \#2
83-9261-4301 4.0 WASHER-FLAT, SM PATT,\#2

NUT-HEX,SM PATT,2-56 X . 156 WD
SCREW-MACH,PAN HD,2-56 \(\times 3 / 16\) LABEL-IDENT,P.C. BD \(* 8 \mathrm{D}\) *

83-9260-2206 6.0
83-9261-4011 5.0

83-9260-4501 4.0
83-3550-1454 1.0

MIL STD MINCOM

PH CATALOG N QTY. -

REF. DES. OR FIND NO.


DRAWING NUMBER MFGR NAME - MFGR PART NO.
\begin{tabular}{ll} 
TSD4-20-226 & COMP INC \\
DM15F271J & ARCO \\
TSD5-20-686 & COMP INC \\
TSD5-6-227 & COMP INC \\
E3XFR & MIDWEC \\
TYPE E3FR & MIDWEC \\
TSD5-35-156 & COMP INC \\
& \\
\(701-3\) & ELEC-TROL \\
\(201-3\) & ELECTROL
\end{tabular}


2N3391A
LITTLE DEVIL
0A781-7344
04781-7393
0A781-7350
0A781-7373
0A781-7389
04781-7174
0A781-7367
0A781-7375
0A781-7201
0A781-7147
79 P R 5 K
79P RIMEG
79P R20K
OA781-7360
230594191
00000A667
79-022-094-0250
7717-2
00000A734-5
DESCRIPTIDN

PH CATALOG NO.
OTY.
\begin{tabular}{ll}
\(83-1510-6203\) & 2.0 \\
\(83-1510-5096\) & 1.0 \\
\(83-1510-6211\) & 1.0 \\
\(83-1510-6259\) & 1.0 \\
\(83-1510-4449\) & 1.0 \\
\(83-1510-4447\) & 2.0 \\
\(83-1510-6209\) & 2.0 \\
& \\
\(83-1550-3620\) & 1.0 \\
\(83-1550-3621\) & 1.0 \\
& \\
\(83-1530-2230\) & 5.0 \\
& \\
\(83-9520-3220\) & 2.0 \\
\(83-1520-7344\) & 1.0 \\
\(83-1520-7393\) & 1.0 \\
\(83-1520-7350\) & 1.0 \\
\(83-1520-7373\) & 2.0 \\
\(83-1520-7389\) & 3.0 \\
\(83-1520-7174\) & 1.0 \\
\(83-1520-7367\) & 1.0 \\
\(83-1520-7375\) & 1.0 \\
\(83-1520-7201\) & 5.0 \\
\(83-1520-7147\) & 1.0 \\
\(83-1520-1420\) & 1.0 \\
\(83-1520-1421\) & 2.0 \\
\(83-1520-1422\) & 2.0 \\
\(83-1520-7360\) & 1.0 \\
\(83-3640-1265\) & 1.0 \\
\(83-3270-0371\) & 1.0 \\
\(83-7280-0270\) & 1.0 \\
\(83-9690-0191\) & 5.0 \\
\(83-3550-1450\) & 1.0
\end{tabular}

TITLE HSG-SIG ELECT,RFPRO UNLY, 8 TRK
CATALOG NO. 83-5920-1261


Figure 51. Reproduce Signal Electronics Housing

TITLE HSG-SIG ELECT,REPRO ONLY, 8 TRK
CATALOG NO. 83-5920-1261

REF. DES. OR FIND NO.

DRAWING NUMBER - MFGR PART NO.
\begin{tabular}{|c|c|c|c|c|c|}
\hline DS70-3-2 & & RAYTHEON & KNOB-CONTROL, RD, SKIRTED & 83-1270-0487 & 1.0 \\
\hline R-301-51A & & SCANBE & GUIDE-P.C. BD, 5.287 LG & 83-1340-0393 & 32.0 \\
\hline 23059A214 & & MINCOM & LABEL-I.D,DYNATRACK \& NAB & 83-3550-1582 & 2.0 \\
\hline \multirow[t]{2}{*}{MS 35190-222} & & \multirow[t]{2}{*}{MIL STD} & SCREW-MACH,FH,4-40 X 5/16 & 83-9260-6503 & 16.0 \\
\hline & & & SCR-MACH,F HD, 8-32 X . 500 LG & 83-9260-6610 & 8.0 \\
\hline MS 35206-214 & & MIL STD & SCREW-MACH, PAN HD, 4-40 \(\times 5 / 16\) & 83-9260-4514 & 32. \\
\hline \multirow[t]{3}{*}{MS35206-228} & & \multirow[t]{3}{*}{MIL STD} & SCREW-MACH,PAN HD,6-32 \(\times 3 / 8\) & 83-9260-4531 & 4.0 \\
\hline & & & WASHER-FLAT, . 219 OD X . 125 ID & 83-9261-4012 & 80.0 \\
\hline & & & WASHER-FLAT, SM PATT, \#6 & 83-9261-4013 & 48.0 \\
\hline MS 35338-40 & & MIL STD & WASHER-LOCK, SPLIT,HELICAL,\#4 & 83-9261-4303 & 80 \\
\hline \multirow[t]{3}{*}{MS35338-41} & & \multirow[t]{3}{*}{MIL STD} & WA SHER-LOCK, SPLIT, \#6 & 83-9261-4305 & 38 \\
\hline & & & NUT-HEX,SM PATT,4-40 X . 188 WD & 83-9260-2201 & 48 \\
\hline & & & NUT-HEX,SM PATT,6-32 X . 250 WD & 83-9260-22.02 & 40.0 \\
\hline \multicolumn{2}{|l|}{RDL-A1F1-0000} & TSTR ELECT & L I GHT-IND ICATOR, P 2STC,RED & 83-1550-2582 & 1 \\
\hline 00000A769 & \multirow[t]{9}{*}{C} & MINCOM & LABEL-IDENTIFICATION, MODULE & 83-3550-1621 & 1 \\
\hline 6050-AC & & G.C. ELECT & NUT-HEX,PLAIN, 3/8-32 X . 563 WD & 83-9262-0073 & 1 \\
\hline RA853 & & THOMS \& BETS & TERM-LUG, INSIJL,R TG, 26WD & 83-9630-0203 & 1.0 \\
\hline 091-0024-000 & & \(V\) IKING & INSERT-POLARIZING, CONN, . 300 LG & 83-1610-0760 & 12.0 \\
\hline MS35206-216 & & MIL STD & SCREW-MACH,PAN HD, 4-40 X 7/16 & 83-9260-4516 & 32.0 \\
\hline MS 35206-227 & & MIL STD & SCREW-MACH,PAN HD,6-32 X 5/16 & 83-9260-4530 & 8.0 \\
\hline \multirow[t]{3}{*}{YEC 120} & & BURNDY & FERRULE-RF CABLE GND, 30000 & 83-9690-0240 & 16.0 \\
\hline & & NATIONAL & WIRE, PVC, SHIELDED 24GA 2COND & 83-7910-0511 & AR \\
\hline & & NATL WIRE & WIRE-TYPE B,22GA BLK NYLON JKT & 83-7910-0045 & AR \\
\hline \multirow[t]{19}{*}{\[
\begin{aligned}
& \text { TFT-200/22 } \\
& 1434 \\
& 1418
\end{aligned}
\]} & & ALPHA WIRE & TUBING-TEFLON,\#22,.027 ID,NAT & 83-7910-0388 & AR \\
\hline & & BIRNBACH & WIRE-BUS,22GA ROUND & 83-7910-0105 & AR \\
\hline & & BIRNBACK & WIRE-BUS BAR, 18 GA, . 040 OD & 83-7910-0560 & AR \\
\hline & & NATL WIRE & WIRE-TYPE B,22GA WHT NYLON JKT & 83-7910-0052 & AR \\
\hline & & NATL WIRE & WIRE-TYPE B, 22GA WHT NYLON JKT & 83-7910-0043 & AR \\
\hline & & NATL WIRE & WIRE-TYPE B,22GA BLK NYLON JKT & 83-7910-0045 & \(A R\) \\
\hline & & \multirow[t]{2}{*}{NATL WIRE} & WIRE-TYPE B, 22 GA ORNG NYL JKT & 83-7910-0250 & \(A R\) \\
\hline & & & WIRE-TYPE B, 22 GA ORN NYLN JKT & 83-7910-0303 & \(A R\) \\
\hline & & NATL WIRE & WIRE-TYPE B,22GA ORN/BLK NYLN & 83-7910-0297 & AR \\
\hline & & \multirow[t]{2}{*}{NATL WIRE} & WIRE-TYPE B, 22GA RED NYLON JKT & 83-7910-0249 & \(A R\) \\
\hline & & & WIRE-TYPE B, 22 GA RED NYLN JKT & 83-7910-0264 & AR \\
\hline & & \multirow[t]{3}{*}{SURPRENANT NATL WIRE} & WIRE-PVC TYPE B, 22 GA,RED-BLK & 83-7910-0066 & \(A R\) \\
\hline & & & WIRE-PVC, TYPE B, 22GA YELLOW & 83-7910-0040 & AR \\
\hline & & & WIRE-TYPE B, 22 GA YELLOW NYLN & 83-7910-0259 & AR \\
\hline & & SURPRENANT & WIRE-PVC, B NYLON, 22GA, YEL-BLK & 83-7910-0067 & \(A R\) \\
\hline & & \multirow[t]{2}{*}{NATL WIRE} & WIRE-TYPE B, 22GA, BRN NYLN JKT & 83-7910-0251 & \(A R\) \\
\hline & & & WIRE-TYPE B,22GA BRN NYLN JKT & 83-7910-0301 & \(A R\) \\
\hline & & NATL WIRE & WIRE-PVC,B NYLON, 22GA, BRN-BLK & 83-7910-0300 & AR \\
\hline & & NATL WIRE & WIRE-TYPE B, 22GA BLU NYLON JKT & 83-7910-0044 & \(A R\) \\
\hline
\end{tabular}

\section*{TITLE HSG-SIG ELECT,REPRO ONLY,8 TRK CATALOG NO. 83-5920-1261}

REF. DES. OR FIND NO.
63
64
65
66
67
68
69
70
71
72
73

DRAWING NUMBER MFGR NAME - MFGR PART NO.E S C R I P T I D N

WIRE-TYPE B, 22 GA BLU NYLN JKT WIRE-PVC, B NYLON, 22GA, BLU-BLK WIRE-PVC, TYPE B, 22GA GRAY WIRE TYPE B, 22 GA GRAY NYLN WIRE-TYPE B, 22GA GRY/BLK NYLN WIRE-TYPE B, 22GA,GRN NYLN JKT WIRE-PVC TYPE B, 22 GA,GRN-WHT WIRE-PVC,B NYLON,22GA,GRN-BLK WIRE-TYPE B,22GA VIO NYLON JKT WIRE-TYPE B, 22 GA, VIOLET-WHITE WIRE-TYPE B,22GA PR/BLK NYLN

PH CATALOG NO. QTY.

SURPRENANT
NATL WIRE
NATL WIRE
NATL WIRE
NATL WIRE SURPRENANT NATL WIRE

NATL WIRE

83-7910-0288 83-7910-0070 83-7910-0042 83-7910-0261 83-7910-0298 83-7710-0248 83-7910-0260 83-7910-0069 83-7910-0041 83-7910-0068 83-7910-0299

AR

AR

\section*{\(A R\)}

AR
\(A R\)
AR
\(A R\)
\(A R\)
\(A R\) \(A R\)

REF. DES. OR FIND NO.

DRAWING NUMBFR - MFGR PART NO.
\begin{tabular}{|c|c|c|c|c|}
\hline TSD3-15-226 & COMP INC & CAP-FXD,TA, 22 UF 15V 20\% & 83-1510-6257 & 1.0 \\
\hline TSD 5-35-156 & COMP INC & CAP-FXD, TA, 15UF 35 V 20\% & 83-1510-6209 & 1.0 \\
\hline TSD5-20-476 & COMP INC & CAP-FXD,TA, 47UF 20V 20\% & 83-1510-6199 & 1.0 \\
\hline WMF 1S47 & CORML-DUBLR & CAP-FXD,PLSTC, .047UF 100 V 10\% & 83-1510-4481 & 1.0 \\
\hline 4610 & ARCO & CAP-VAR,MICA, 190-900 PF & 83-1510-6252 & 1.0 \\
\hline 70F333AI & J.W. MILLER & CHOKE-RF, \(3.3 \mathrm{MH} 5 \%\) & 83-1540-0410 & 1.0 \\
\hline 2N3391A & GENERAL ELEC & TSTR-SI, NPN, PWR, 25 VCB & 83-1530-2230 & 1.0 \\
\hline 2N3405 & G.E. & TSTR-SI, NPN, GEN PUR, 50VCE & 83-1530-2232 & 1.0 \\
\hline 3067P-1-502 & ROURNS & RES-VAR, WW, 5 K OHM \(1 / 2 \mathrm{~W} 10 \%\) & 83-1520-1319 & 2.0 \\
\hline 04781-7369 & MINCOM SPEC & RES-FXD,FILM, 8. 2 K OHM, 1/2W, \(2 \%\) S & 83-1520-7369 & 1.0 \\
\hline 04781-7264 & MINCOM SPEC & RES-FXD,FILM, 910 OHM, 1/2W, 2\% S & 83-1520-7264 & 1.0 \\
\hline 04781-7359 & MINCOM SPEC & RES-FXO,FILM, 1. \(2 \mathrm{~K} 0 \mathrm{OM}, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7359 & 1.0 \\
\hline 04781-7342 & MINCOM SPEC & RES-FXD,FILM, \(820 \mathrm{OHM}, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7342 & 1.0 \\
\hline 04781-7333 & MINCOM SPEC & RES-FXD,FILM, \(330 \mathrm{HM}, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7333 & 1.0 \\
\hline 04781-7345 & MINCOM SPEC & RES-FXD,FILM, 180 OHM, \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7345 & 1.0 \\
\hline 04781-7379 & MINCOM SPEC & RES-FXD,FILM, 47 K OHM, 1/2W, \(2 \% \mathrm{~S}\) & 83-1520-7379 & 1.0 \\
\hline \(77 \mathrm{PR1K}\) & RECKMAN & RES-VAR, COMP, 1K DHM, \(3 / 4 \mathrm{~W}, 10 \%\) & 83-1520-1211 & 1.0 \\
\hline 0A781-7331 & MINCOM SPEC & RES-FXD,FILM, \(270 \mathrm{HM}, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) & 83-1520-7331 & 1.0 \\
\hline SSO-7 & U.T.C. & XMFR-TSTR SPLY, INPUT, 2OK OHM & 83-1540-1199 & 1.0 \\
\hline 3-582118-9 & AMP INC & JACK-TIP,. 156 WD X . 460 DP & 83-1610-0752 & 2.0 \\
\hline SSO-CH & U.T.C. & BRACKET-XMFR MTG, U TYPE & 83-1320-1663 & 1.0 \\
\hline 7717-2 & THERMALLOY & PAD-TSTR, INLINF, 3 LEAIIS & 83-9690-0191 & 1.0 \\
\hline 000004667 R & MINCOM & HANDLE-EJECTIR, P.C. RI), 1.50 LG & 83-3270-0371 & 1.0 \\
\hline 230594016 A & MINCOH & BRACKET-COMPONENT MTG, SIG FLFC & 43-3320-1132 & 1.0 \\
\hline O0000A734-20 & MINCOM & LABEL-IDENT, P.C. RD, \(\geqslant 35 \%\) & 92-3550-1591 & 1.0 \\
\hline 230594331 B & MINCOM & P.C.BD-FILM, SYNC, RFCORL & 23-3640-1220 & 1.0 \\
\hline 79-022-094-0250 & ESNA & PIN-SPRING, . 094 DIA X . 250 LG & 83-7280-0270 & 1.0 \\
\hline 1434 & R IRNBACH & WIRE-RUS, 22GA ROUND & 83-7910-0105 & AR \\
\hline MS 35206-215 & MIL STD & SCREN \(-\mathrm{M} A C H, P \triangle N \mathrm{HO}, 4-40 \times 3 / 8\) & 83-0760-4515 & 1.0 \\
\hline MS35206-213 & MIL STD & SCREN-MACH, PAN HIS, 4-40 X 1/4 & 63-0760-4513 & 2.0 \\
\hline & & WASHER-FLAT, GENFRAL PURPISF : \(\angle 4\) & 43-4つ61-4002 & 3.0 \\
\hline MS35338-40 & MIL STD & WASHER-LOCK, SPLIT, HHL I CAL, \# 4 & 83-9761-4303 & 3.0 \\
\hline & & NUT-HFX, SM P^TT, 4-40 X . 188 ! 1 ) & 83-9760-2201 & 3. \\
\hline
\end{tabular}

REF．DFS．OR FIND NO．

C1，C10，C12
C2，C9
C． 3
\(C 3\)
\(C 4\)
\(C 5\)
C5
C6
\(C 7\)
C 8
C 11
C13
C 14
C15
CR1，CR2
K 1
LI
\(01,02,03,04,05,06\)
R1
\(R 2\)
\(R 3, R 7\)
R4
R5，R10，R 23
R6，R12，R17
R 8
R9
R11
R13
R14
R15，R21
R16
R18
R19
R20
R22
T1
1
2

DRAWING MUMBER
－MFGR PART NI
TSD5－35－156
TSD5－20－476
TYPE E3FR
DM15F271J
TSD5－6－227
TSD－1－20－225
DM15F501J
\(112 A 1 B 334 \mathrm{~J}\)
TSD5－20－686
DM19F102J
E3XFR
E \(3 \times F\)
1N270
201－3
70F 3334 I
2N3391A
LITTLE DEVIL 0A781－7399 0А781－7148 0 \(4781-7350\) 04781－7388 04781－7175 3068P－1－203 0А781－7217
04781－7383
（）\(A 781-7348\)
04781－7357
\(04781-7373\)
04781－7221
04781－7358
0A781－7367
3067P－1－50？
0A781－7360
SSO－11
230594391
\(\mathrm{SSO}-\mathrm{CH}\)

NiFGR NANE
1）E S C R I P T I II M

COMP INC
MIDWEC
APCO
CHMP INC
COMP INC ARCD
ELECTRO CURE COMP INC ARCก
MIDNEC
MIIWFEC
HUGHES
ELECTROL

GFNERAL ELEC

IHMITE
MINCOM SPEC MINCUM SPEC MINCOM SPFC MINCOM SPEC MINCOM SPEC ROURNS MINCIIA SPEC MINCIM SPEC MIACHA SPFC MINCOM SPFC MINCTIF SPEC MINCOM SPEC HINCDM SPFC MINCDM SPEC ROURNS MINCOM SPEC

II．T．C．
R MINCOM
II．T．C．

COMP INC CAP－FXD，TA，1511F 35V \(70 \%\)

RELAY－SPST， \(2 K\) ГIHM 24 V OC
CHIIKE－PRF， 3.3 FiF 5 ：
\begin{tabular}{|c|c|c|c|}
\hline FXD，TA， 1 & 1511 F 35 V & 0\％． & \\
\hline AP－FXH，TA， & 47 JF & 2.0 V & \\
\hline CAP－FXI，PLS． & ．OnG8UF & 100 V & \\
\hline CAP－FXD，VIVICA， & 270 P & boov & \\
\hline CAP－FXI，TA， & 2700F & AV & \\
\hline CAP－FXD，TA， & 7． 211 F & 70 V & \\
\hline CAP－FXD，MICA， & 500 P & 500 V & \\
\hline CAP－FXD，PAPER， & ，． 331 F & 100 V & \\
\hline CAP－FXD，TA， & G8UF & 20 V & \\
\hline AP－FXD，MICA， & 1000 PF & 500 V & \\
\hline CAP－FXD，PLSTC， & ，．nG8UF & 100 & \\
\hline CAP－FXI），PLSTC， & ，． 7 J UF & OOV & \\
\hline IODE－GE，GEN P & PUR， 100 & ， & \\
\hline
\end{tabular}

TSTR－SI，MPN，PHR， 25 VCB

RES－FX［），COMP，\(\quad 1\) H HiM \(1 / 2 W^{5 \%}\) RES－FXO，FILH， 470 OK ।HI－ \(1 / 7 \mathrm{H}, 2 \% \mathrm{~S}\)

 RES－FXI，FILM， 120 K （Hiか， \(1 / 2 \mathrm{H}, ~ 2 \% \mathrm{~S}\) RES－FXD，FILM，1K กHIF，1／2W，2\％S RFS－VAR，COMP， \(20 K\)（IHM ． \(2 \mathrm{~W} 20 \%\) RES－FXD，FILM， 6 RO \(1 \mathrm{HH} \cdots, 1 / 2 \omega, 7 \% \mathrm{~S}\) RES－FXI，FILM，九RK OHF，1／2 \(1+2 \%\) S RES－FXn，FILH， 270 （1HH， \(1 / 2 \%\) ，2\％\(S\) RES－FXI），FILM， 750 （ HH ， \(1 / 2 \mathrm{~W}\) ，つ\％ S KES－FXIJ，FILM， 27 K OHF， \(1 / 2 \omega, 2 \% ~ S\) RFS－FXI，FILH， 100 OHM， \(1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RFS－FXI，FILLi， \(8>0\) OHm， \(1 / 2 \mathrm{w}, 2 \% \mathrm{~S}\) RHS－FXO，FILM， 6.8 K （ \(1 \mathrm{Hi}, 1 / 2 \mathrm{~W}, 2 \% \mathrm{~S}\) RFS－VAR，WH， 5 K lHH \(1 / 2 \mathrm{~W} 10 \%\) KFS－FXII，FIL．M，2．2K OHK，1／2W， \(2 \% \mathrm{~S}\)

XIFFR－TSTR SPLY，OUTPUT， 500 חH \(H^{M}\)
P•C•B円ーFILM SYMC，REPRODUCF
RRACKFT－XIFFR \(\because \cdot i T \mathrm{~T}\) ， 11 TYPF

PH CATALIG NO• OTY．

23－1510－6209 3
43－1510－6199 2.0
83－1510－4447 1．0
43－15］0－5096
4．3－151（1－大759 1．0
\＆3－1510－6240 1．0
\(43-1510-5120 \quad 1.0\)
83－1510－4301 1．0
23－1510－6211 1．0
23－1510－5041 1．0
83－1510－4454 1．0
83－1510－4436 1．0
83－1530－0263 2．0
\(83-1550-36211.0\)
93－1540－0410 1．0
\(83-1530-2230 \quad 6.0\)
3－9520－3220 1．0
ィ3－15ク0－7349 1．0
43－1ヶ20－7148 \(\quad 2.0\)
\(83-1520-1350 \quad 1.0\)
83－1520－7388 3．0
\(83-1520-7175 \quad 3.0\)
83－1520－1166 1.0
83－1520－7718 1．0
н3－1520－7383 1．0
83－1520－7348 1.0
\＆3－1520－7357
83－1520－7373 2．0
83－1520－7221 1．0
\(83-1520-7358\) 1．0
83－1520－7367 1．0
83－1520－1319 1．0
83－1520－7360 1.0
83－1540－1200 \(\quad 1.0\)
83－3640－1174 1．0
83－1320－1663 1．0

TITLE P.C. RI ASSY-FIIM SYNC,REPRO CATALOG NO. 83-4930-1712

REF. OFS. OR FIND NO.

3
4
4
5
6
7

10

DRAWING NUMRER
- MFGR PART NO.
\begin{tabular}{ll} 
MS 35206-213 & MIL STD \\
MS 35338-40 & MIL STD
\end{tabular}

B MINCOM
000004667
79-022-094-0250 ESMA
00000A734-21
7717-2

MINCOM
THERMALLOY

MFGR NAME

\title{
REOUI REMENTS
}
() E S C R I P † I O N

PH CATALOG NO.
OTY.

REF. DES. OR FIND NO.

\section*{1
2}

2
3

DRAWING NHMRER MFGR NAME
- MFGR PART NO.

230594080
23059A130
23059A140

MINCOM
E MINCOH
C MINCOM
P.C. BD ASSY-CONVERSN, NAB REP P.C. BD A'SSY-DYNATRACK,RECORD P.C.BD ASSY-DYNATRACK,REPRO

PH CATALGG NO. OTY.

83-4930-1122 1.0 83-4930-1006 1.0 \(83-4930-1964 \quad 1.0\)
title Kit-film sync, sig elec
CATALOG NO. 83-5990-0541

REF. DES. OR FIND NO. DRAWING NUMBER MFGR NAME - MFGR PART NO.

\section*{23059A310}

23000A310 23028A350 23059A020 23059A030 23059A330 23059B040 23059A050 23059A060 23059A170 23059A390 1-480276-0 \(60511-4-L P\) 1-480304-0 60510-4 201359-3 42980-1-LP 201923-1 201229-1 200390-4 200389-4 1-480305-0

D MINCOM
A MINCOM
A MINCOM
F MINCOM
D MINCOM
B MINCOH
F MINCOA
B MInCO:
G MINCOH
B MINCOM
B MINCOH ANP INC ARIP IHC ANP ANP INC ANIP INC \(A M P\) INC
4 AMP INC ANTP INC ANP IKC AMP INC AMP INC \(A M P\) INC

HOUSING ASSY-AUDIO \& FILA SYNC CABLE ASSY-HEAD, FILM SYNC CABLE ASSY-PWR, FILIA SYNC P.C. BD ASSY-BIAS, ERASE P.C.BD ASSY-NAB ERASE COUPLER P.C. BD ASSY-FILF SYNC, RECORD P.C. BD ASSY-RECORD,NAB PUR SUP ASSY-SIG ELECT, H/NETER P.C. BD ASSY-LME AMP,SIG ELECT P.C.BD ASSY-PREAMP, NAB, REPRO P.C. BD ASSY-FILH SYNC,REPRO SHELL-CONN, RECT, . 665 HD X. 850 CONTACT-ELEC,PIN, .084 DIA SHELL-CONN,RECT, 3 POSITICN CONTACT-ELEC,SOC, 18-22GA SIZE SHELL-CONN, RECT, 26 POSITIONS PII-CONTACT, CONF,20-2.4 GA IIRE CLIP-SPRING TE!SIOM, HALE
CLAMP-ELEC,STRAIH REL,. 779 MCE RECP-GUIDE PI:CENTER,SERIES M PIN-GUIDE, CENTER, AKP SERIES M SHELL-CONN,RECT, 3 POS

PH CATALOG NO. QTY.


REF. DFS. OR FIMD NO.

23059A210-2
23059 A060
23059A170
B 28 N \(2.5-2\)
23000 A \(30-2\)
23028A250

D MINCOM
G MINCOH
MI 3 MINCOM ACDC ELECTS MINCOM
A MINCOM

HSG-SIG ELECT,REPRO ONLY, 8 TRK P.C. BD ASSY-LNE AMP,SIG ELECT P.C.BD ASSY-PREAMP,NAB,REPRO POWER SUPPLY-28VOLTS 2.5 AMPS CARLE ASSY-HD,REPRODUCE, 8 TRK CABLE ASSY-POWER,REPRODUCER

83-5920-1261 83-4930-1091 83-4930-1940 83-1930-1672 \(83-4570-0390\) 83-4570-0420
1.0
8.0
-
.
. 0
1.0
1.0

\section*{three generations ahead of its time}

\section*{3M BRAND PROFESSIONAL TAPE RECORDER}

The 3M Brand Professional Tape Recorder you now own is the finest quality recording instrument available. It has been engineered to the world's most exacting standards for performance and reliability.
Your 3M Brand Professional Tape Recorder was tested at our factory, by electronic measuring equip-
ment, prior to shipment. It met or surpassed every current specification. Therefore, it should operate with maximum performance and without trouble. If difficulties are encountered, however, the following warranty will be of value to you.

\section*{WARRANTY}

The 3M Company warrants to the original purchaser that the 3 M Professional Tape Recorder, or its "Dynatrack", or its electronic NAB system, or its "Isoloop" tape transport, or its magnetic heads* (if any of these components are purchased separately) is/are free of defects of material and/or workman-
ship for a period of one year from date of delivery to the original purchaser.
3M Company agrees to either replace or repair defective parts subject to the following provisions: -This warranty shall not constitute any guarantee as to the duration of the life expectancy of magnetic heads, since that is a

\section*{CONDITIONS OF PARTS WARRANTY}

The obligation of 3 M under this warranty is limited to remedying any such defect by repairing or replacing defective parts. For the first ninety (90) days after delivery to the original purchaser, defects in materials and workmanship covered by this warranty will be remedied at no cost for labor or material to the
original purchaser. During the balance of the first year after delivery to the original purchaser, repairs or replacement of defective parts will be made at no charge for material, but a reasonable charge for labor will be made to the original purchaser.

\section*{CONDITIONS OF WARRANTY}
A. The attached warranty registration card must be completed and mailed to 3 M at the address printed thereon, within ten (10) days from date of delivery of the equipment to original purchaser.
B. All defects must be reported within the warranty period to 3 M , who will make warranty repairs found to be required either at the place of business of the purchaser or at the 3 M factory to which any defective equipment shall be returned, transportation prepaid by the purchaser. Equipment shall not be returned to 3 M without 3 M 's prior instructions to do so.
C. Purchaser shall not have used, or allowed to have been used in the equipment, any parts (except accessory items such as transistors, magnetic heads, tape, etc.) not supplied by 3 M Company nor shall this warranty cover damages to the 3M equipment, resulting from the incorporation of
other than original systems compatible components or accessories.
D. The equipment must not have been altered or modified without the express approval of 3 M ; nor subjected to misuse, negligence or accident. Serial numbers must not have been altered, defaced or removed.

This warranty is made in lieu of all other warranties, expressed or implied, and 3M's only obligation shal be to repair or replace defective parts as provided in the warranty. 3M shall not otherwise be liable for any injury, loss or damage, direct or consequential, arising out of the use or the inability to use the equipment. Before using, purchaser shall determine the suitability of the equipment for his intended use and assumes all risks and liability whatsoever in connection therewith. The foregoing may not be changed except by an agreement signed by an officer of seller.

\section*{3M BRAND PROFESSIONAL TAPE RECORDER WARRANTY REGISTRATION}

\footnotetext{
I hereby submit for validation this Warranty Registration Certificate for the 3M Brand Professional Tape Recorder identified above. I understand that the One Year Warranty accompanying this Certificate constitutes the sole warranty on this product, and that it is subject to the terms enumerated on said warranty, which I have read and agree to.
}

\section*{Which categories below best describe your recording} application(s)?
\(\square\) Broadcast
\(\square\) Film Produce
\(\square\) Recording Studio
\(\square\) Government
\(\square\) Education
\(\square\) Duplicator
\(\square\) Industria \(\square\) Instrumentation


\title{
3M COMPANY \\ Mincom Division \\ 300 S. Lewis Road \\ Camarillo, California 93010
}

ATTN: MINCOM WARRANTY VALIDATION

\title{
This 3M M23 manual \\ was \\ "scanned by the klettster" \\ as a GIFT*
}

\title{
to those who have these machines and want to keep them operational
}

\section*{The 3M M23 was the first 3M iso-loop tape recorder for professional use}

\section*{3M M23 machines were around 45 years old at the time this scan was made}

\author{
enjoy this... keep the reels turning
}
\(*_{\text {if some opportunist charges you money for this pdf he's making money from no }}\) investment other than his time, trolling around on the interweb finding this and other docs, downloading and flipping multiple copies for cash - like a money machine... whereas the klettster has several hours and \(\$ 36\) in costs (for scanning the larger pages) invested in to this... and is asking nothing... other than that you use and enjoy... maybe I am the idiot and the trolling pdf reseller is the genius...

I'll leave that for others to debate.```

