Contents

Introduction 1
High Pass Filter (resistor modification) 1
Important Note 1
Installation 2
Dimensions 3
Power Requirements 3
Mains Supply (rack units) 4
DC Power Supply Indicators (rack units) 4
Phantom Power 4
Output Level Control 4
Connector Details 5
Amplifier Controls 6
1073 Module 6
1084 Module 7
Specifications 8
1073 and 1084 Modules 8
Recall Sheets 9
1073 - Vertical Module 9
1073 - Horizontal Module 10
1084 - Vertical Module 11
1084 - Horizontal Module 12
Service Information 13
Schematic Drawing Index - 1073/1084 Racks 13
Schematic Drawing Index - 1073 Module 13
Schematic Drawing Index - 1084 Module 14

Introduction

These 45 series modules are the same as the original designs, and contain all of the original components.

1073 Channel Amplifiers

These very popular sounding mic pre's are considered by many to capture the very essence of the Neve sound. In manufacture since the early 1970s, the Class A design offers 3 bands of EQ with one fixed high frequency and a high pass filter.

1084 Channel Amplifiers

Based on the same technology as the 1073s, the 1084s again deliver the unique sound and quality of Neve. However, the 1084s offer additional features, including 3 switchable EQ bands with cut and boost, a high Q for presence and low pass/high pass filters.

High Pass Filter (resistor modification)

Important Note

The high pass filter in both the 1073 \& 1084 modules is a passive design and as such must be correctly terminated to achieve a maximally flat response.

In order to achieve this there is a 5 k 1 resistor fitted inside the module on the back connector between pin $\mathrm{E}(\mathrm{Ov})$ and pin K (fader send) see diagram below:

In situations where the fader connection is not used (most Neve 45 series consoles except BCM10's) then the resistor remains in place.

In situations where the fader connection is used (BCM10's and AMS Neve 1073/1084 racks) then the 5 kl resistor should be disconnected and replaced with a fader or potentiometer whose value is $4 \mathrm{k} 7 / 5 \mathrm{k}$ ohms.

Failure to do so will result in incorrect levels and uneven frequency response.

Installation

The 1073s and 1084s are available as stand-alone modules, or in a choice of two housings.
The 3U rack houses two modules mounted horizontally in a 19" rack-mounting unit.
The 5 U rack houses eight modules mounted vertically in a 19" rack-mounting unit.
Both have rear panels with XLRs for transformer balanced I/O.
The 3U rack rear panel has a fused, voltage selector IEC mains input connector. The 5U rack has a free standing AC supply with a fused, voltage selector IEC mains input connector and connects to the rack via a connector and a 1.5 meter cable.

Modules of any combination can be fitted into a rack unit.

Additional Information

*Rack Mount Instructions *

A) Elevated Operating Ambient - If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (Tma) specified by the manufacturer.
B) Reduced Air Flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.
C) Mechanical Loading - Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.
D) Circuit Overloading - Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on overcurrent protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.
E) Reliable Earthing - Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (e.g. use of power strips).

Recommended Tma $=50$ deg C

Mains Voltage Adjustment
1.) Switch off unit.
2.) Remove fuse.
3.) Turn inner barrel with screwdriver or coin until correct voltage figure is under the white arrow on the housing.
4.) Replace fuse.

Dimensions

Stand-alone Modules	Width mm (inches)	Height mm (inches)	Depth mm (inches)	Approx. Weight kg (lbs)
1073 Module	$45(1.8)$	$222(8.75)$	$254(10)$	$2.5(5.5)$
1084 Module	$45(1.8)$	$222(8.75)$	$254(10)$	$2.5(5.5)$

19" Rack Mounting	U	Depth mm (inches)	Height mm (inches)	Approx. Weight kg (lbs)
2 Module Version	3	$405(16)$	$133(5.25)$	$11(24.2)^{*}$
8 Module Version	5	$405(16)$	$222(8.75)$	$30(66)^{*}$

* Fully populated rack

Power Requirements

Rack Units	3 U	5U
Rated Voltage	100-230V AC	100-230V AC
Rated Frequency	$50-60 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$
Rated Current	0.5A Max	0.8A Max
Primary Protection Fuse:		
Operating Voltage	100-230V AC	100-230V AC
Fuse Rating and Type	T0.5A H 250V $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ CERAMIC	T1A H 250 V $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ CERAMIC
Location	IEC Mains connector	IEC Mains connector
Secondary Protection Fuse:		
Output Voltage		24V DC
Fuse Rating and Type		T 2.0A L 250 V $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ GLASS
Location		F1
Output Voltage		48 V DC
Fuse Rating and Type		T 250 mA L 250 V $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ GLASS
Location		F2

Modules	Power
1073 Module	$106 \mathrm{~mA} \pm 10 \mathrm{~mA}$ at 24 V DC. Negative Earth
1084 Module	$106 \mathrm{~mA} \pm 10 \mathrm{~mA}$ at 24 V DC. Negative Earth

Mains Supply (rack units)

The 3 U rack has a fused, voltage selector IEC mains input connector.
The 5 U rack has a free standing AC supply with a fused, voltage selector IEC mains input connector and connects to the rack via a connector and a 1.5 meter cable.

The mains switch on the rear panel of the 3 U rack unit is non-illuminating.
The CH (chassis) and OV are linked internally.

DC Power Supply Indicators (rack units)

The red LED on the front panel of both 3 U and 5 U rack units indicates +24 V power healthy when illuminated.

The green LED on the front panel of both 3 U and 5 U rack units indicates +48 V power healthy when illuminated.

Phanfom Power

Phantom power can be supplied to each module by pressing the phantom power switch on the front panel of the 3 U or 5 U rack. The LED in the switch will illuminate confirming that phantom power is supplied.

Outpuł Level Control

Each channel has an independent Output Level Control. The control is post-input, post-EQ and pre-output. This control can reduce the level at the output.

When the Output Control is fully clockwise the output gain is unity. The output is 20 dB down with the control in the mid-position.

Modules In Transit

Please note that the designs of the AMS Neve classic modules and racks are to the original Neve specifications and are not designed to withstand transit.

Should you wish to move the rack from one location to another (for example shipping to another studio location or returning the rack to a repair center for servicing), please remove all installed modules from the rack and package the rack and each module separately in packaging suitable to withstand the intended transit.

If modules are installed in a rack while in transit, damage to the internal edge connectors may occur.

Standalone 1073 \& 1084 Module Wiring to 18 way Free Plug

Amplifier Controls

1073 Module

High Frequency: \quad Smooth $+/-16 \mathrm{~dB}$ fixed frequency shelving at 12 kHz .
Low Frequency: Smooth $+/-16 \mathrm{~dB}$ shelving with selectable frequencies of 35 Hz , $60 \mathrm{~Hz}, 110 \mathrm{~Hz} \& 220 \mathrm{~Hz}$.

Mid Frequency: \quad Smooth $+/-18 \mathrm{~dB}$ peaking, fixed ' Q ' with, selectable centre frequencies of $0.36 \mathrm{kHz}, 0.7 \mathrm{kHz}, 1.6 \mathrm{kHz}, 3.2 \mathrm{kHz}, 4.8 \mathrm{kHz}$ \& 7.2 kHz .

High Pass Filter: $\quad 18 \mathrm{~dB}$ per octave slope, switchable between $50 \mathrm{~Hz}, 80 \mathrm{~Hz}$, $160 \mathrm{~Hz} \& 300 \mathrm{~Hz}$.

EQL Button: Switches the equaliser in or out of circuit.
Phase Button:
Gives 180° Phase change at Balanced Output.

1084 Module

High Frequency: \quad Smooth $+/-16 \mathrm{~dB}$ shelving wit selectable frequencies of 10 kHz , 12 kHz and 16 kHz .

Low Frequency: \quad Smooth $+/-16 \mathrm{~dB}$ shelving with selectable frequencies of 35 Hz , $60 \mathrm{~Hz}, 110 \mathrm{~Hz} \& 220 \mathrm{~Hz}$.

Mid Frequency: \quad Smooth $+/-12 \mathrm{~dB}$ or $+/-18 \mathrm{~dB}$ peaking with switchable 'High Q', selectable centre frequencies of $0.36 \mathrm{kHz}, 0.7 \mathrm{kHz}, 1.6 \mathrm{kHz}$, $3.2 \mathrm{kHz}, 4.8 \mathrm{kHz} \& 7.2 \mathrm{kHz}$.

High Pass Filter:
18 dB per octave slope, switchable between $45 \mathrm{~Hz}, 70 \mathrm{~Hz}, 160 \mathrm{~Hz}$ \& 360 Hz .

18 dB per octave slope, switchable between $6 \mathrm{kHz}, 8 \mathrm{kHz}, 10 \mathrm{kHz}$, 14 kHz \& 18 kHz .

EQL Button:
Phase Button:
Switches the equaliser in or out of circuit.
Gives 180° Phase change at Balanced Output.

Specifications

1073 and 1084 Modules

Microphone Input:	Input Impedance 300Ω or 1200Ω, gain +80 db to +20 dB in 5 dB steps.
Line Input:	Input Impedance $10,000 \Omega$ bridging, gain +20 dB to -10 dB in 5 dB steps. Both inputs are transformer balanced and earth free.
Output:	Maximum output is $>+26 \mathrm{dBu}$ into 600Ω. Output impedance is 75Ω @ 1 kHz . Output is transfomer balanced and earth free.
Distortion:	Not more than 0.07% from 50 Hz to 10 kHz at +20 dBu output (80 kHz bandwidth) into 600Ω.
Frequency Response:	$+/-0.5 \mathrm{~dB} 20 \mathrm{~Hz}$ to $20 \mathrm{kHz},-3 \mathrm{~dB}$ at 40 kHz Eq Out.
Noise:	Not more than -83dBu at all Line gain settings Eq In/Out (22 Hz to 22 kHz bandwidth). EIN better than -125dBu@ 60dB gain.

Recall Sheets

1073 - Vertical Module

Service Information

Schematic Drawing Index - 1073/1084 Racks

3U Horizontal Rack (AM5028)	AM5028 Assembly Drawing AM5028 Wiring Diagram
5 V Vertical Rack (AM5033)	AM5033 Assembly Drawing AM5033 Wiring Diagram

Schematic Drawing Index - 1073 Module

1073 Channel Amplifier (PL31073-C)	E10006 Block Diagram EH10023 Circuit Diagram
High Pass Filter (PL10182/C)	PL10182/C Assembly Drawing D/10019C Circuit Diagram
HF/LF EQ Frequency (PL10205)	PL10205 Assembly Drawing D/10042 Circuit Diagram
Presence Frequency (PL10211)	BA211 Assembly Drawing D/10048 Circuit Diagram
Mic Line Output (PL10283AV)	PL10283 Assembly Drawing EX10283 Circuit Diagram
Mic Amp/EQ Amp (PL10284)	PL10284 Assembly Drawing EX10284 Circuit Diagram
Sensitivity Switch (PL20033)	EK20033 Wiring Diagram
Low Frequency Switch (PL20065)	EK20065 Wiring Diagram
HP Filter Switch (PL20066)	EK20066 Wiring Diagram
Presence Switch (PL20105)	EK20105 Wiring Diagram

Schematic Drawing Index - 1084 Module

$\left.\left.\begin{array}{ll}\text { 1084 Channel Amplifier (PL31084-C) } & \begin{array}{l}\text { EB20039 } \\ \text { EH10036 Circuit Diagram }\end{array} \\ \text { High Pass Filter (PL10182/A) } & \begin{array}{l}\text { PL10182/A Assembly Drawing } \\ \text { D/10019A Circuit Diagram }\end{array} \\ \text { Low Pass Filter (PL10194/A) } & \begin{array}{l}\text { PL10194/A Assembly Drawing } \\ \text { D10031/A Circuit Diagram }\end{array} \\ \text { HF/LF EQ Frequency (PL10205) } & \text { See 1073 drawing section }\end{array}\right\} \begin{array}{ll}\text { PL10211/A Assembly Drawing } \\ \text { D/10048/A Circuit Diagram }\end{array}\right\}$

